
Iteration over a collection with constantly
changing components and size.

Every part of the iteration where a message
is sent to a remote object has to be

instrumented with error handling code.

Example: RFID tags

New communication
partners

Group Communication Abstractions for Distributed Reactive Systems

for (i = 0; i < remoteObjects.size(); i++) { ... }

 handleEvent() {
 ...
 }

Application strucutured
around disjunct event handlers

Communication happens
through shared state

Programming in an event-
driven style is hard!

Clouds of disposable,

omnipresent processors

Mobile devices

Freq
uent

disco
nnectio

ns

IIteration over explicitly
enumerated communication

partners

 Context Classic Distributed Systems Event Driven Systems

Andoni Lombide Carreton Stijn Mostinckx Wolfgang De Meuter
Programming Technology Laboratory

Vrije Universiteit Brussel, Belgium

 handleEvent() {
 ...
 } handleEvent() {

 ...
 }

 AmbientTalk

Object oriented, distributed and concurrent

Asynchronous message sending

Explicit references to remote objects
Futures and future observers

 def prices := Vector.new();

 rfidTagsInCart.each: { |tag|
 when: tag<-getPrice() becomes: { |price|
 prices.add(price);
 } catch: TimeOutExc using: { |exc|
 system.println("Could not read tag!");
}}

 Reactive Programming in Ambienttalk

 >system.println(seconds)
 >>7684034598
 >>7684034599
 >>7684034600 Time-varying values called

behaviors

 def updatePrices(tags) {
 prices := Vector.new();
 tags.map: { |tag|
 when: tag<-getPrice() becomes: { |price|
 prices.add(price);
 }}};

updatePrices(rfidTagsInCartBehavior);

rfidTagsInCartBehavior
reflects the state of the network and
updatePrices will be reevaluated
each time the behavior changes.

Event queue

Example: Smart
shopping cart equipped

with RFID reader

Programmer is responsible of
writing event handlers to

process the results and to deal
with disconnections. Polling has
to be done manually to keep the

results up to date.

prices is
not a behavior!

In our example

however...

Object oriented, distributed and concurrent

Asynchronous message sending

Reactive collections of remote objects
Futures and future observers

There is still a gap
between the reactive local
application and the results

computed in parallel by
the outside world.

...but we still have to use event
handlers to process the results
of asynchronous invocations.

 Reactive Group Communication

 def pricesBehavior :=
 rfidTagsInCartBehavior.collect: <-getPrice();

Use a higher order message to deliver the argument
message and aggregate the results in a behavior.

Object oriented, distributed and concurrent

Asynchronous message sending

Broadcasting of messages to
reactive groups of remote objects

Reactive aggregation of results
of asynchronous invocations

Sustained communication

$
$ $$

$$ $ $

Multiple messages...

...one reactive result that is kept up to
date by the original group construct.

[1] Andoni Lombide Carreton, Stijn Mostinckx, Wolfgang De Meuter, "Group Communication Abstractions for Distributed Reactive Systems", Vrije Universiteit Brussel, 2008

 Further Reading

http://prog.vub.ac.be/amop

