
4 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014

email: egonzale@vub.ac.be
office: 10F732

4 Partial Failures in AmbientTalk: Mobile Music Player

Ambienttalk’s tutorial and language reference are available at http://soft.vub.
ac.be/amop/. The lab session material is available at pointcarre and http://
soft.vub.ac.be/amop/teaching/dmpp

4.1 Idea
The purpose of this exercise is to gain insights into the behaviour of far references and
failure handling by implementing a music player meant to be used on mobile devices.
The music player contains a library of songs. When a music player discovers another
player in its environment, they set up an ad hoc network and exchange their music
library’s list. After the exchange, the music player calculate the percentage of songs
both users have in common. If this percentage exceeds a certain threshold, the music
player warn the user that someone with a similar musical taste is nearby.

4.2 Implementing the mobile music player
We will implement the music player application starting from a skeleton code shown
below (also available in the lab material):

// the library consists of simple song objects
def Song := object: { //... };
def THRESHOLD := 40; // when users share 40 % of their songs, we signal a match
def makeMusicPlayer(username){
def myLib := Vector.new();// the local user’s songs library
// the remote interface object that will be exported
def remoteFacade := object: {
// returns a session object encapsulating the music library exchange
def openSession(remoteUser) { //...}

};
def localInterface := object: {
// engage in a peer-to-peer service discovery to discover another music player
def goOnline() { //... };
def addSong(artist, title) {

myLib.add(Song.new(artist, title));
};

};
localInterface;

};

A music player application is created by invoking a function called makeMusic-
Player. The function defines two nested objects named localInterface and
remoteFacade which respectively define the methods invoked locally and the meth-
ods of the distributed protocol that music players will use to exchange their library’s
list. Use the above skeleton to incrementally grow the application as follows:

1



4 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS 2014

(a) Complete the implementation of the skeleton code with the distributed protocol
of a music player which works as follows:

MusicPlayerServiceObject@
device A

RemoteInterface@
device B

session@
device B

openSession()

session

uploadSong(song)

'ok

endExchange()

Figure 1: The music library exchange protocol

Once a music player discovers another one, it asks the remote player to open
a library exchange session by sending it the openSession message which
returns a session object. A session object implements methods to send song
information (uploadSong) and to signal the end of the library exchange (end-
Exchange). A music player uses the session object to send all of its own songs
one by one. Once all songs are sent, the end of the exchange is signalled. After
the exchange, the percentage of songs both users have in common is calculated
and the application signals the presence of a user with similar taste if needed.

Note: Use the provided testAsyncMusicPlayerDiscovery() unit test
to help you in this iteration.

(b) Adapt your implementation to add failure handling code to deal with transient
and permanent failures. More concretely, add failure handling support to (a) the
necessary asynchronous message sends, and (b) the session object.

Hint: The session object is clearly only relevant within the context of a single
music library exchange. If the exchange cannot be completed (due to a persistent
network partition or a crash ), the session object and the resources it transitively
keeps alive should be reclaimed. This indicates that the remote reference to
this session object should be leased, such that both music players can gracefully
terminate the exchange process if the lease expires. If the exchange is success-
fully completed (i.e the remote player signals the end of the exchange), the lease
should also expire.

(c) Uncomment testAsyncMusicPlayerExchange unit test and adapt your
implementation to pass it. You will need to change the makeMusicPlayer
constructor function to receive as parameter a closure which is applied when a
remote peer has a similar taste.

(d) Add a unit test to test the library exchange when one player disconnects perma-
nently.

2


