
Distributed and Mobile Programming Paradigms
Academic Year 2011-2012

Exam Requirements for the WPO part of the course

A urban game for collaborative noise mapping

Deadline 11 June 2012.

Delivery Both the documentation and the code should be delivered via the drop box of Point-
Carre in the form of a <name>-project.zip file on the day of the deadline before 16:00.

Material The project material is available as usual in the Documents folder at PointCarre, and
at http://soft.vub.ac.be/amop/teaching/dmpp.

1 Assignment

The purpose of this project is to implement a game for collaborative noise mapping. The game
consists of two teams which have to map the noise pollution of a particular area of a city at a
particular time of the day (e.g. the VUB campus between 9 and 10 in the morning). The teams
compete to cover the area in the least possible time and earning the largest number of points.
Points are scored by visiting —and measuring the noise of— the reachable locations of the area,
called “spots”. Only the first player who visits a spot receives a point. Extra points can be scored
by reaching a few “join spots” which are predefined spots randomly placed over the area at the
beginning of the game. A join spot gives points only to the members of the first team that reaches
it (i.e. all the members of the team have to visit the join spot at the same or different times).

The teams start at the same spot and their participants can start walking in random directions.
During the game, the players collect the measurements and points they score when visiting the
different spots of the game area. The game ends when the map is fully covered by the two teams
and/or when the duration of the game is reached.

To measure the noise, you can assume that the game will use a participatory sensing appli-
cation such as NoiseTube. NoiseTube allows mobile users to measure noise with their Android
phone while they move about. The application associates noise data with GPS coordinates, and
displays it on a map as shown in Figure 1 (red dots = loud, green dots = quiet). More information
about NoiseTube can be found at its website, http://noisetube.net. As we explain in Sec-
tion 3, in this project you will either use NoiseTube or a simulation of it depending on the profile
you choose.

2 Requirements

The game is a multi-player mobile application. Each participant of the game has a (mobile) device
running the application. Here are the requirements for the distributed design of the game:

Peer-to-peer communication Interactions among participants should happen in a peer-to-peer
fashion. In this project, you can assume that a WiFi network will be available all over the
game area. However, two devices are said to be connected only if they are at the same
spot at the same time. Figure 1 illustrates the normal and join spots for a game at the VUB
campus. Every spot is defined as a square delimited by two GPS coordinates indicating

1

2.1 Extra requirements 2 REQUIREMENTS

normal spot join spot

unreachable
(or uninteresting)

location

noise
measurements

Figure 1: A game for collaborative noise mapping at the VUB campus.

its beginning (X, Y) and its end (X + ∆X, Y + ∆Y). The information about spots will be
calculated by the application before starting the game. Join spots are randomly put on the
map. The application only reveals join sports when the players actually visit those spots
(i.e. players will not know up front where the join spots are located).

There is no global knowledge of the area. The participants can only know about each other’s
collected data when they meet at some spot. Only then they can exchange data, allowing
each participant to construct a (partial) map of the measured area. As such, the participants
can share information about visited spots and learn where join spots are located. This also
allows the participants to correct their score as they may learn that somebody else reached
a spot first, and to calculate how many members of their teams have already passed by a
join spot.

You can assume that when the game is over, the participants come back together at the lo-
cation where the game started. All measurements are collected and the data is put together
so that final gaps and scores become clear.

Network failure handling You must assume that every computational unit in the network can
fail at any point in time. Team members meeting at some spot will take the time to fully
synchronise their collected data. In this case, interruptions of the data exchange due to
disconnections should not hamper the normal functioning of the game application.

2.1 Extra requirements

Extra requirements are not compulsory but rewarded with extra bonus marks. Some examples
are the following:

• You can add additional kinds of spots or objects to the game which benefit or damage the
players who reach them. Some of these objects can be “contagious” in the sense that they
propagate to other players (indefinitely, or within some time or space frame).

2

2.2 Technology 3 PROJECT PROFILE

• You can also add a recommendation service which suggests what to visit next according to
the player’s collected information.

Being creative and implementing additional requirements of your own, or any of the extra
requirements to the project is appreciated.

2.2 Technology

The game should be implemented in AmbientTalk. You can use any of the language abstractions
seen in class or during the lab sessions for designing the application. You can also exploit the
symbiosis between Java and AmbientTalk to make use of Java classes for e.g. your data struc-
tures such as a Hashmap. However, all distributed communication must be implemented in Am-
bientTalk. In other words, you cannot use other technologies (e.g. Java RMI) as your distributed
computing framework.

3 Project Profile

In order to implement the application, you will choose one of the following profiles:

Profile A: Scientific Profile. The distributed design is the most important part of your project,
and the hardware platform where the application will be deployed is not that relevant.
The emphasis is on the design of the application, and the correctness of the distributed
interactions. You will use the version of AmbientTalk for desktop machines, e.g. by means
of the Eclipse plugin as done in the lab sessions.
In this project profile, you can use the map given in lab session 5 of the course as a re-
placement for simulating the recording noise of an actual participatory sensing application.
Recall that the Java GUI given during the lab session consists of a map in which your lo-
cation is simulated while you drag the mouse. You will need to update this GUI to attach
mock noise data to each location.

Profile B: Applied Profile. The distributed design is an important part of your project, but the
application will be effectively deployed on the Android platform. The emphasis is on the
correct working of the application on the Android platform and a usable user interface.
You will extend the NoiseTube application with the gaming functionalities previously de-
scribed. This means that you can reuse noise measurements that the application produces
as well as its map GUI. We will provide you with an Android project from which you can
start. The project already contains NoiseTube and the AmbientTalk android core library,
it is already setup in a similar way as in lab session 3. Please read the appendix of this
document to get further details about the installation and use of this Android project.
In order to facilitate the testing, you should adapt the application to work with simulated
location information (i.e. you will not be asked to go outside to test the application, but
you can do so if you are a concerned citizen ;). The simulated location information can be
obtained at least in two ways:

1. By extending NoiseTube’s map GUI to indicate your location using the device’s touch
screen. This is similar to the interactions with the Java GUI that we described in Profile
A, but you will simulate that you change your location as you draw on the map with
a finger.

2. By using NoiseTube’s map GUI as it is now implemented, and loading mock loca-
tion data through the Emulator Control of Android’s Dalvik Debug Monitor Server
(DDMS). DDMS allows you to load locations one by one or in a batch file (GPX).

You should mail no later than 16 April 2012 which project profile you would like to do. If you
choose Profile B, please let us also know if you owe an Android device so that we can distribute
devices if necessary.

3

5 EVALUATION

4 Testing and Report

You should define a number of test cases for your application. Keep in mind that these test sce-
narios should test distributed interactions (e.g. testing that players receive each other’s collected
measurements). In order to test your applications in the face of network disconnections, you can
use the different AmbientTalk constructs used during the lab sessions (e.g. the disconnect:
form).

You should write a small report about this project. This report must be no longer than 7 pages
(excluding figures) and serves as a guide for understanding your project. The report should
include:

1. An overview of your application and how the implementation fulfils the requirements.

2. The important cases and design choices (w.r.t. distributed aspects) considered in the project.

3. Description of test scenarios and behaviour of your application.

4. A small “manual” about how to run and test your application.

5. Which IdeAT plugin version or AmbientTalk build you used (if you choose Profile A).

5 Evaluation

The project will be evaluated mostly on good distributed design. Each profile will be evaluated
as follows:

Profile A: distributed design 80% stability and usability 20%
Profile B: distributed design 50% stability and usability 50%

What is important for both profiles:

• You have to display the collected data of other players you encounter in the game area. You
are encouraged to reuse the aforementioned Java GUI or Android project to this end. We
strongly advise against building your own GUI as the focus of the project is the distributed
design.

• You should aim to fully exploit a peer-to-peer architecture and a fault-tolerant design.

• The testing should be focused on trying the application from a distributed point of view.

• Quality and structure of the code is very important.

• Make sure that Java code (if any) is compatible with version 1.5.

• This assignment is to be made individually. Cooperation is not allowed in any form.

• Problems with the software tools (e.g. Eclipse plugin, Android setup, etc.) and devices
should be reported no later than two weeks before the deadline, i.e. 28 May 2012.

Please do not hesitate to contact the assistants for further questions.
Elisa Gonzalez Boix, e-mail: egonzale@vub.ac.be, office: 10F731
Jorge Vallejos, e-mail: jvallejo@vub.ac.be, office: 10F724

For further information about NoiseTube:
Ellie D’Hondt, e:mail: eldhondt@vub.ac.be, office: 10F730

Good luck!

4

A THE NOISETUBE AMBIENTTALK ANDROID PROJECT

Figure 2: Installing Google APIs.

A The NoiseTube AmbientTalk Android project

This appendix contains some extra information (only relevant for those choosing Profile B) about
the Android project from which you can start.

A.1 Installing the Android project

You need to import the project into Eclipse as done in lab session 3. Note that the project contains
the android-core AmbientTalk library. If you use the same Eclipse workspace than during the
sessions you will not need to import it again.

The Android project requires using Google APIs as the Project Build Target. This is because
NoiseTube uses a Google Map View for showing a map to the user, which is only included in the
Google APIs. The project is currently set to Google API 2.3.3, but if you have not installed this
API the project will give compilation errors.

To install Google APIs you need to make sure that you are running the latest version of the
ADT plugin(17.0.0.v201203161636-291853) and that in your SDK manager you have installed the
latest version of the Android SDK tools (Rev. 17). If you have installed the latest version of the
plugin, the Google APIs can be installed as an add-on using the Android SDK Manager. Figure 2
shows where to find this package when you select the option “Repository” in the bottom left
corner of the Manager’s window. You can also install them when the SDK Manager shows the
packages corresponding to the API levels by selecting it within a particular API level.

Choose Google API level 10 or another one which is supported by your Android device.
Once installed, you will need to set the properties of the project to use it (Properties -> Android
-> choose the Google API level) as shown in Figure 3.

You can find more information about how to install Google APIs at http://code.google.
com/android/add-ons/google-apis/index.html.

If you are unable to run the project after installing the Google APIs and properly setting the
project properties, please contact us. We have detected misbehavior of the application on older

5

A.2 Using the Android project A THE NOISETUBE AMBIENTTALK ANDROID PROJECT

Figure 3: Using Google APIs as Project Build Target.

Android devices (e.g. Xperia Sony Ericson running version 2.1).

A.2 Using the Android project

We now discuss the relevant parts of the NoiseTube AmbientTalk Android project you will need
to use/adapt:

MainActivity.java As its name says, it is the main activity of the application. It contains the nec-
essary code to load the noiseMappingGame.at file. This activity already stores a reference
to the AmbientTalk application in a variable called game, so that Android can communicate
with AmbientTalk. After calling the makeNoiseMappingGame function from noiseMap-
pingGame.at, this activity starts recording noise measurements from your phone.

noiseMappingGame.at It is the AmbientTalk file you need to implement to interact with the
GUI and remote players. It is stored under the /assets/atlib/game folder. noiseMap-
pingGame.at includes the makeNoiseMappingGame constructor function that returns a
localInterface object with the 3 methods described by the ATNoiseMappingGame.java
interface. The registerActivity method setups the connection between Android and
AmbientTalk. It is called once AmbientTalk is launched and has evaluated the makeNoise-
MappingGame function receiving as parameter the activity representing the GUI to which
AmbientTalk objects communicate. Right now, it receives a reference to a MainActivity
instance, but you may need to change this in a later stage of your project, i.e. call it with
another activity.

TabMapActivity.java NoiseTube use tabs to organise its different views. The map is defined in
the TabMapActivity.java class which creates a map-viewing activity which overlays
the noise measurements taken by the application. You will need to adapt this activity to
display the noise tube measurements of other players in the neighbourhood. In order to
facilitate the testing of your application (without having to go outside and record measure-
ments), you can adapt the map view to be able to display a “simulated” path. As explained
before, there will be two options to do this:

6

A.2 Using the Android project A THE NOISETUBE AMBIENTTALK ANDROID PROJECT

Figure 4: Using DDMS’ location emulator.

1. Similar to the GUI of exercise session 5, you could draw a path on the map with your
finger. This path represents the locations you are measuring. To this end, have a look
at the documentation of the onDraw method in the MapView.java class.

2. Your location can also be simulated by using Android’s DDMS (http://developer.
android.com/guide/developing/debugging/ddms.html). DDMS provides a
location emulator as shown in Figure 4. More details on how to simulate location data
can be found at http://developer.android.com/guide/topics/location/
obtaining-user-location.html#MockData.

ATNoiseMappingGame.java and JNoiseMappingGame.java Similar to the WeScribble project
used in the lab session 3, these two classes are the Java interfaces defining the methods used
for the communication between AmbientTalk and Android. Currently, it only contains the
minimum methods to set up the application. You should complete these interfaces with the
necessary methods. We are going to look at them during the evaluation of your project in
order to be able to understand your code.

7

