
First Steps in AmbientTalk
Sequential programming

Elisa Gonzalez Boix - Jorge Vallejos
{egonzale,jvallejo}@vub.ac.be

Lab Sessions - Goals

• Get you familiar with concurrent and distributed
programming abstractions.

• Get you ready for the project.

3

Implementing small
applications in AmbientTalk

AmbientTalk

• Distributed programming language specially designed
for applications running on mobile ad hoc networks.

• Started in 2005

• Interpreter (not optimised)

• JVM as platform

• Runs on and J2ME/CDC phones

4

Mobile Ad hoc Networks

• Networks composed of mobile devices connected
wirelessly.

Volatile
Connections

Zero
Infrastructure

5

How does AmbientTalk help?

Peer-to-peer service discovery protocol
decentralized, location-based

No blocking synchronization
receive events, even when disconnected

Asynchronous, buffered messaging
send messages, even when disconnected

Network failures ≠ exceptions
timeouts & leasing, whether connected or disconnected

Volatile Connections

Zero Infrastructure

6

Lab Sessions Schedule
W Date Exercise Concepts

23 21/02/2012 First steps in AmbientTalk Sequential programming

24 28/02/2012 First steps in AmbientTalk Sequential programming (continuation)

25 06/03/2012 Internet Cafe Concurrent programming, unit test

26 13/03/2012 weScribble on Android phones Distributed programming

27 20/03/2012 Mobile Music Player Distributed programming

28 27/03/2012 Flikken in TOTAM Tuple-based distributed programming

28 30/03/2012 BeerNet Distributed Hash Tables

EASTER HOLIDAYEASTER HOLIDAYEASTER HOLIDAYEASTER HOLIDAY

31 17/04/2012 goShopping with REME-D Reflective progr.,Distributed Debugging

32 24/04/2012 Omnireferences Reflective programming, Intercession

............

39 11/06/2012 Project delivery report + code

40/1 18-29/06/2012 Project defenses 30-minute discussion with demo
7

Project

• Implement a distributed application in AmbientTalk.

• Evaluated mostly on good distributed design.

• What is important to remember?

• Individual!

• Quality and structure of the code!

• Test cases and report!

8

Material

• Language reference

• Tutorial

• Lab sessions material

• AmbientTalk IDE for Eclipse (IdeAT)

• iat command line parameters

http://soft.vub.ac.be/amop/

http://code.google.com/p/ambienttalk

9

Variables, functions &
tables

10

Definition

• As in Pico:

def x := 5

def square(x) { x * x }

def t[<size>] { <expression> }

11

Assignments

• Almost as in Pico:

x := 5

square := { |x| x * x }

t[1] := 5

12

Referencing

• As in Pico:

x

square(5)

t[1]

13

Functions

• Support for lambda’s: closure literal

{|a,b| a + b };

def square := { |x| x * x };
square(2);

14

Functions

• Variable length arguments

• Optional arguments

def sum(@args){
 def total := 0;
 foreach:{ |el| total := total +el} in: args;
 total;
};

def incr (num, step := 1) { num + step };
incr(3);
incr(3,3);

15

‘built-in’ control structures

• Defined in the lexical root (top-level)

if: (n < 1) then: { ... } else: { ... }

def if: cond then: cons else: alt {
 cond.ifTrue: cons ifFalse: alt
}

while: { i<10 } do: { ... }

foreach: table in: foo

Check
the language

reference

16

Objects

17

Prototypical Objects

• Ex-nihilo creation:

def point := object: {
 def x := 0;
 def y := 0;
 def sumofsquares() { x*x + y*y };
}

point.x;
point.sumofsquares;

18

Cloning and Instantiation

• new = clone + init

def Point := object: {
 def x := 0;
 def y := 0;
 def init(anX, aY) {
 x := anX;
 y := aY;
 }
}

def anotherPoint := Point.new(2, 3);

Point.x >> 0
anotherPoint.x >>2

19

Object Extension

• Clones the parent + implicit delegation

def Point3D := extend: Point with:{
 def z := 0;
 def init(anX, aY, aZ) {
 super^init(anX, aY);
 z := aZ;
 }
}

def anotherP3D := Point3D.new(1,2,3);
20

Lexical Scope

• Objects have full access to enclosing environment of
definition.

def makePoint(anX, aY) {
 object: {
 def x := anX;
 def y := aY;
 def sumofsquares() { x*x + y*y };
 }
}

21

Lexical Scope

• Nesting objects is allowed:

def point := object: {
 def x := 0;
 def y := 0;
 def sumofsquares() { x*x + y*y };
 def prettyprinter := object: {
 def print() { “(“+ x +”,”+ y +”)” }
 }
}

22

Object Scope

• Object = slots (= fields + methods)

+ lexical parent + dynamic parent

def o := object: {
 def x := 5;
 def getStatic() { x };
 def getDynamic() { self.x };
}

def o2 := extend: o with: {
 def x := 6;
}

o2.getStatic ??
o2.getDynamic ??

23

Native Data Types

• numbers, fractions, text, tables, booleans

• all objects: former ‘native functions’ are now ‘native
methods’.

• Text:

• Numbers:

"AmbientTalk".explode();

"a;b;c".split(";"); //["a","b","c"]

6.to: 0 step: 2 do: { |i|
 system.println(i)
} // 6 4 2

24

Keyworded Messages

• Just a special type of selector

def util := object: {
 def map: fun onto: tbl {
 def i := 0;
 def copy[tbl.length] { fun(tbl[i:=i+1]) };
 copy;
 }
}

util.map: { |x| x*x } onto: [1,2,3]

25

