
2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS WPO

Elisa Gonzalez Boix
email:egonzale@vub.ac.be

office: 10F736

2 First Steps in AmbientTalk
The aim of this session is to get you familiar with the sequential part of AmbientTalk.
Even though AmbientTalk is a domain-specific language for distributed programming,
it remains a full-fledged object-oriented language in its own. This exercise introduces
AmbientTalk’s basic building blocks (i.e. functions, objects, messages).

2.1 Material
Ambienttalk’s tutorial and language reference are available at http://soft.vub.
ac.be/amop/.

The lab session material is available at pointcarre and http://soft.vub.ac.
be/amop/teaching/dmpp

2.2 Functions, Tables and control flow primitives
Question 1: Write a recursive function for calculating greatest common divisor:

gcd(a,b) = a if a=b
gcd(a,b) = gcd(a-b,b) if a>b
gcd(a,b) = gcd(a,b-a) if b>a

Question 2: Write a function that returns the length of a table (without using ta-
ble.length of course ;)
Question 3: Write a function that returns the reverse of a given table.
Question 4: Write a makeSetUnion function that takes two tables and returns the
concatenation of them without duplicates.

Usage example: makeSetUnion([1,2,4,4], [4,5]) returns [1,2,4,5]
Question 5: Write an average function that calculates the average of the variable
amount of given numbers.
Question 6: Write a function that takes a table as argument and returns a table without
the first element. Try to do it with 2 statements :)

2.3 Object-oriented programming
From this section on, you will need to remove the TODO prefix in the unit test method
corresponding to a question in order to check that the requested functionality works.
Sometimes, you will also need to complete the unit test implementation.

Question 7: Implement a prototypical Counter object with methods to incre-
ment, decrement and get its current value of the counter.

1

2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS WPO 2.3

a) Create a new instance of a Counter and increment it.
Note: Check the current value of the prototypical Counter object after increment-
ing the new instance. Is it 0?

b) Extend the Counter object to increment or decrement the value of counter by
a given value. Add the necessary code in the testCounter method to test this
functionality.
Hint: use optional arguments.

c) Extend the Counter object with a method doUpToCounter: which takes
a block and executes it as many times as the counters current value. Add the
necessary code in the testCounter method to test this functionality.
Hint: take a look at the methods implemented by native number objects.

d) Extend the Counter object with a method doWithCurrentValue: which
takes a block as argument and executes the block with the current value of the
counter. Add the necessary code in the testCounter method to test this func-
tionality.

e) Make two extensions to the Counter object: ForwardCounter and Backward-
Counter objects and define the following methods: setTo, isZero and
step. Add the necessary code in the testCounter method to test this func-
tionality.

Question 8: Implement a prototypical Polygon that has one method called peri-
meter which takes an arbitrary number of arguments representing the n-sides of a
simple polygon, and returns its perimeter (i.e. the sum of the sides).

a) Extend the Polygon object to create a Rectangle object. The Rectangle
object has two methods area and perimeter to calculate its area and perime-
ter, respectively.

b) Extend the Rectangle object to create a new Square object.

Question 9: Use the observer pattern to create a future. A future is an object
that acts as a placeholder for a result of an operation that is initially unknown, usu-
ally because its value has not been computed yet. Once the return value is computed,
it “replaces” the future object, and the future is said to be resolved with the value.
Computations that require access to the actual resolved value of the future before it is
resolved can be “suspended” in the form of an observer registered to the future. To
this end, programmers can use the when:becomes: function as shown in the code
snippet below that illustrates the use of a future object to display the current location
of a user:
// Return a future object representing a location
def futureLocation := makeFuture();
// Install an observer on the future’s resolved value
when: futureLocation becomes: { |location|

system.println("Your current location is " + location);
};
// Resolve the future
futureLocation.resolve("VUB");
// This should return "Your current locations is VUB"

2

2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS WPO2.4 Modular Programming

Implement the makeFuture and when:becomes: functions which allow for
the following behaviour:

• The makeFuture function creates a future object that has a method named
resolve, which can be used by a programmer to resolve the future, and a
subscribe method to register an observer object with a future.

• The when:becomes: function takes as parameter a future, and a closure
which will be applied to the future’s resolved value when it is computed.

As you will see later in the theory class, futures (also known as promises) are a
frequently recurring abstraction in concurrent languages. They are used to reconcile
asynchronous message passing with return values.

2.4 Modular Programming
Question 10: Implement a stack data type using the vector module found in /at/
collections/vector.at.

a) You will have to implement a constructor to create an empty stack and methods
to manipulate it (push, pop and top).

b) Raise a StackUnderflow and StackOverflow exception when trying to
pop an empty stack or push into a full stack, respectively.

c) Complete the implementation of the unit test called testStack that check that
the StackUnderflow exception is raised correctly. Hint: take a look at the
file /at/lang/exceptions.at for creating exceptions.

Question 11: Implement a Comparable trait with the following methods that
allow objects to be compared: equalTo, smallerThan, greaterThan,
smallerOrEqualTo and greaterOrEqualTo.

a) You will also have to implement a Date object which uses this trait to compare
dates as follows: oneDate.smallerThan(anotherDate)

b) Re-implement the Comparable object now using the AmbientTalk’s traits li-
brary found in /at/lang/traits.at.

Hint: Check the AmbientTalk tutorial, section Language Extensions in the Ap-
pendix for information about the library.

2.5 Symbiosis with Java
Question 12: Implement an small “AmbientTalk widget” which converts temperature
from Fahrenheit to Celsius (C = (F − 32) ∗ 5/9). The widget uses a simple Java GUI
which accepts Fahrenheit input from the user, and has a button to display the conversion
results. Hence, the temperature widget consists of an AmbientTalk object in charge of
the logic to convert the temperature measures, and a Java object which implements the
GUI of the widget.

3

2 DISTRIBUTED AND MOBILE PROGRAMMING PARADIGMS WPO2.6 Concurrent programming

a) Create the GUI of the widget as a Java instance of a TemperatureWidget
class, which takes as parameter an AmbientTalk object (called Conversor) to
calculate the conversion.
Hint: Check the ATConversorInterface to find out the method that the
TemperatureWidget Java object expects a Conversor object to imple-
ment to calculate the temperature in Celsius.

b) Modify your program in such a way that the result of calculateCelsius
is displayed on the GUI only when the Conversor object explicitly calls the
setCelsiusTemperature method on the TemperatureWidget object.

2.6 Concurrent programming
Question 13: Implement a stop watch actor which implements three methods to start,
stop, reset the watch. Additionally, add a getTime method to get the time elapsed by
the watch since it started.

Hint: You will need to use a customer object (also known as callback object) to
return the time elapsed.

Question 14: Implement an actor which initializes an existing stop watch and pro-
vides a method called stopAndPrintTimeElapsedAfter to stop the watch after
a certain time has elapsed, and prints the time elapsed since the stop watch was initial-
ized.

Hint: Use the when:elapsed: construct found in /at/support/timer.at
to execute a piece of code after a timeout has elapsed.

Question 15: Use the provided skeleton code to implement a fibonacci actor.
Hint: Recall that actors have no access to the lexical scope. You will need to import

your definition of fibonacci within the actor scope.

4

