
2 CONCURRENT PROGRAMMING: THE INTERNET CAFE

Elisa Gonzalez Boix (email:egonzale@vub.ac.be, office:10F731)
Jorge Vallejos (email:jvallejo@vub.ac.be, office:10F724)

2 Concurrent Programming: The Internet Cafe

This exercise introduces AmbientTalk’s concurrent building blocks: actors and asyn-
chronous message passing. The idea is to implement an internet cafe, i.e a place where
customers can use a computer with access to internet. The internet cafe and customers
are going to be modeled as actors. The internet cafe consists of a computer room with
a limited number of computers. Each computer has an id that identifies its position
in the room. When customers ask for a computer they get back a computerId if there
is room in the computer room. If a customer hasn’t received a computerId within a
certain amount of time, the customer leaves the internet cafe.

2.1 Material
Ambienttalk’s tutorial and language reference are available at http://soft.vub.
ac.be/amop/. The lab session material is available at http://soft.vub.ac.
be/amop/teaching/dmpp

2.2 Implementing the internet cafe
We will implement the internet cafe application starting from a skeleton code shown
below (included in the lab session material)

def MAX_COMPUTERS := 2;

def internetCafe(capacity := MAX_COMPUTERS) {
actor: { |capacity|

def computerRoom := ... //TODO

def getRoom(){ computerRoom };
};

};

def makeCustomer(name, internetCafe) {
//TODO

};

def sessionModule := object:{
def sessionTest(){

//TODO
};

};

An internet cafe is created by invoking a internetCafe function which returns
a far reference to an actor. The actor provides a method getRoom so that customers
can access the computer room. Customers are created by invoking makeCustomer
Use the above skeleton to incrementally grow the internet cafe as follows:

1

2 CONCURRENT PROGRAMMING: THE INTERNET CAFE
2.2 Implementing the internet cafe

a) Implement the makeCustomer function which returns a far reference to an ac-
tor whose behaviour implements a haveComputer and a leaveComputer
methods to ask for a computer and leave the computer room, respectively.

Recall: actors have not access to the enclosing lexical scope!

b) Implement the data structure for computer room using a guarded object (found
in /at/lang/guards.at). Recall that a guard is a predicate which must be
evaluated to true in order to execute an asynchronous message sent to an object.

You will need to implement in the following methods on the computerRoom
object to manipulate the occupancy of the room:

addComputer adds a customer in the room and returns a computerId of the
position assigned to that customer. Remember that this method can only be
executed as long as there is space in the computer room.

freeComputer(computerId) releases the given position in the computer room.

c) Extend your implementation so that customers leave the internet cafe when they
don’t receive a computerId within a certain amount of time (i.e. 10 seconds)
when they ask for a computer.

Hint: take a look at @Due annotation in futures to put time boundaries to the
delivery of asynchronous messages.

d) Adapt your implementation to pass the testAsyncOneCustomer.

Hint: your haveComputer method should return a future which is resolved
with the customerId received from the computer room.

e) Implement testAsyncFullOccupancywhich checks that the computer room
is full after customer and customer2 asked for a computer.

f) So far we assumed that customers receive by parameter the internet cafe to in-
teract with. So both actors live in the same virtual machine. Add the necessary
code to use the network facilities to find the internet cafe to interact with, i.e.
turn your concurrent application into a distributed one.

You will need to adapt your implementation to add service discovery code so
that customers search for a InternetCafe service in the environment and the
internet cafe actor exports such a service. Once a customer discovers an internet
cafe service, it asks the cafe for a computer.

Recall: by default AmbientTalk’s network access is shut down!

2

