-~ v Vrije
ilx. Sﬂ%i?@s@b Universiteit
Brussel

571 AMBIENTTALK

Distribution Model = OO + Events

Generate and receive

application requests
g Follow-up on

outstanding requests

o) React to services appearing
and disappearing

React to references
‘ disconnecting,
reconnecting, expiring

obj<-msg(arg)
def msg(param) { ... }

when: future becomes: { l|resultl ... }

when:

when:

when:

when:

53

type discovered: { Irefl

ref disconnected: { ... }
ref reconnected: { ... }

ref expired: { ... }

Conditional Synchronization (CS)

® with Futures:

def testAsyncOneCustomer(){

def future := when: customer<-haveComputer()@FutureMessage becomes:{
lval l
self.assertEquals(val, 1);

s

future;

b

* applying the becomes: block resolves future.

* applying the catch: block ruins future.

54

CS with Futures

® Synchronization based on event or conditions by
explicit future manipulation:

def [future, resolver] := makeFuture();
consumer<-give(future);
def val := /* calculate useful value */

resolver.resolve(val);
resolver.ruin(exception);

55

CS in Unit Tests

def InstantMessengerTest(){
extend: /.at.unit.test.UnitTest.new("IMTest") with: {
def test := self;
def testAsyncMessageSend() {
def [fut,res] := /.at.lang.futures.makeFuture();
def IMGUI := object: {
def init(im) { im.setUsername("Aact") };
def display(text) {
test.assertEquals("Added buddy: Bact", text);
res.resolve(true);

s
s
def A := createIM(IMGUI);
// ... code to create peer B called Bact
s
fut;

s
}s 56

CS in Unit Tests

def MyTest(){
extend: /.at.unit.test.UnitTest.new("MyTest") with: {

def testAsyncWhenElapsed() {
when: 2.seconds elapsedWithFuture: {
self.assertEquals(3,1+2);

s

b
s

>MyTest.runTest()

57

Failure Handling
&— &

l O chat "O J

whenever: InstantMessenger discovered: {lchatl]

when: chat disconnected: {
system.println(“buddy offline”);

}

when: chat reconnected: {
system.println(“buddy online”);

ks

58

Far References & Disconnections

chat _--—-~" """ ~T=-__ 6
- \»

® Far references keep referring the remote object
upon a disconnection!

59

Permanent Disconnections

® But, the system cannot distinguish transient from
permanent disconnections.

® |imite lifetime of the remote object references:

Leasing [grey89, waldoO1]

& . o

e
Y

60

Enabling Leased Refs

import /.at.lang.leasedrefs;

lease: timeout for: object

® object serialization returns a leased object reference
rather than a far reference.

def session := lease: minutes (30) for: (
object: {
def joinSession(player) {..}
def receiveVote (poll) {..}
}
) ;

6l

Working with Leased Refs

import /.at.lang.leasedrefs;

® |easing integrated with remote references.

def session := object: {
def addItemToCart (anItem) { ... }
def checkOutCart () { ... }
}s;
def leasedSession := lease: 1.minutes for: session;

object serialization returns a leased far
reference rather than a far reference.

62

Working with Leased Refs

® Communication via asynchronous message passing,
except for == method.

® Managing life cycle of a leased object reference:

renew: leasedRef for: timelInterval

revoke: leasedRef

leaseTimeleft: leasedRef

63

Working with Leased Refs

® Registering a closure that is executed when the
leased reference expires:

when: session expired: {
system.println("session with “ + remotePeer + timed out.");
//cleanup code for session

}i

® Observers can be placed in both client and server
side!

® An expired leased object reference behaves as
permanently disconnected far reference!

64

Leasing Variants

renewOnCalllease: timeout for: object

® the leased reference gets renewed as long as it
receives messages.

singleCalllease: timeout for: object

® the leased reference gets revoked upon a succes
method call on the server object. ’

65

Leasing and Futures

& receive(msg)@ue(seconds(10)) (6
KN

Rl

when: buddy<-receive(msg)@Due(seconds(10)) becomes: { |ack|
system.println(msg.content + " sent to: " + to)

} catch:(TimeoutException using: { |e|
system.println("msg: " + msg.content +

}i

timed out.");

® Future is passed as a singlecallLease Which expir
® upon reception of a resolve Or ruin messag

® due to a timeout
66

