
Insights in Partial Failures

Leased object references and Unit Testing
Elisa Gonzalez Boix
egonzale@vub.ac.be

• with Futures:

Conditional Synchronization (CS)

def testAsyncOneCustomer(){
 def future := when: customer<-haveComputer()@FutureMessage becomes:{
 |val|
 self.assertEquals(val, 1);
 };
 future;
};

43

• applying the becomes: block resolves future.
• applying the catch: block ruins future.

CS with Futures

• Synchronization based on event or conditions by
explicit future manipulation:

def [future, resolver] := makeFuture();
consumer<-give(future);
def val := /* calculate useful value */

resolver.resolve(val);
resolver.ruin(exception);

44

def InstantMessengerTest(){
extend: /.at.unit.test.UnitTest.new("IMTest") with: {
 def test := self;
	 def testAsyncMessageSend() {
	 def [fut,res] := /.at.lang.futures.makeFuture();
	 	 def IMGUI := object: {
	 	 	 def init(im) { im.setUsername("Aact") };
	 	 	 def display(text) {
	 	 	 test.assertEquals("Added buddy: Bact", text);
	 	 	 res.resolve(true);
	 	 	 };
	 	 };
	 	 def A := createIM(IMGUI);

 // ... code to create peer B called Bact
	 };
	 fut;
 };
};

CS in Unit Tests

def MyTest(){
extend: /.at.unit.test.UnitTest.new("MyTest") with: {
	
	 def testAsyncWhenElapsed() {
	 	 when: 2.seconds elapsedWithFuture: {

 self.assertEquals(3,1+2);
	 };
	 };
};

>MyTest.runTest()

CS in Unit Tests Failure Handling

Can discover either one or any matching service:
whenever: InstantMessenger discovered: {|chat|
 ...

}

when: chat disconnected: {
 system.println(“buddy offline”);
}
when: chat reconnected: {
 system.println(“buddy online”);
}

chat

47

Far References & Disconnections

• Far references keep referring the remote object
upon a disconnection!

... ...
ref

wireRep object

ref

chat

48

• But, the system cannot distinguish transient from
permanent disconnections.

• Limite lifetime of the remote object references:

Permanent Disconnections

... ...
ref

wireRep object

ref

Leasing [grey89, waldo01]

49

Working with Leased Refs

• leasing integrated with remote references.

import /.at.lang.leasedrefs;

def session := object: {
def addItemToCart(anItem) { ... }
def checkOutCart() { ... }

};
def leasedSession := lease: 1.minutes for: session;

object serialization returns a leased far
reference rather than a far reference.

Working with Leased Refs

• Communication via asynchronous message passing,
except for == method.

• Managing life cycle of a leased object reference:

renew: leasedRef for: timeInterval

revoke: leasedRef

leaseTimeLeft: leasedRef

51

• Registering a closure that is executed when the
leased reference expires:

• Observers can be placed in both client and server
side!

• An expired leased object reference behaves as a
permanently disconnected far reference!

when: session expired: {
 system.println("session with “ + remotePeer + timed out.");
 //cleanup code for session
};

Working with Leased Refs

52

Leasing Variants

• the leased reference gets renewed as long as it
receives messages.

• the leased reference gets revoked upon a successful
method call on the server object.

singleCallLease: timeout for: object

renewOnCallLease: timeout for: object

53

• Future is passed as a singleCallLease which expires:

• upon reception of a resolve or ruin message

• due to a timeout

when: buddy<-receive(msg)@Due(seconds(10)) becomes: { |ack|
 system.println(msg.content + " sent to: " + to)
} catch: TimeoutException using: { |e|
 system.println("msg: " + msg.content + " timed out.");
};

Leasing and Futures

receive(msg)@Due(seconds(10))

ack

f

