Conditional Synchronization (CS)
e with Futures:
I n S Ights I n Pa rtlal Fal I U reS def testAsyncOneCustomer(){
def future := when: customer<-haveComputer(O@FutureMessage becomes:{
Ivall
self.assertEquals(val, 1);
1
Leased object references and Unit Testing },F“t“re;
Elisa Gonzalez Boix ’
egonzale@vub.ac.be
* applying the becomes: block resolves future.
* applying the catch: block ruins future.
j— ¥ Vrije
4 Universiteit
Brussel
AMBIENTTALK 43

CS in Unit Tests

CS with Futures

def InstantMessengerTest(){
extend: /.at.unit.test.UnitTest.new("IMTest") with: {
def test := self;
e Synchronization based on event or conditions by def testAsyncMessageSend() {
explicit future manipulation: def [fut,res] = /.at.lang. futures.makeFuture();
def IMGUI := object: {
def [future, resolver] := makeFuture(); def init(im) { im.setUsername("Aact") };
consumer<-give(future); def display(text) {
def val := /* calculate useful value */ test.assertEquals("Added buddy: Bact", text);
resolver.resolve(val); res.resolve(true);
resolver.ruin(exception); ! s

def A := createIM(IMGUI);

’ // ... code to create peer B called Bact
s

“ s

CS in Unit Tests

def MyTest(){
extend: /.at.unit.test.UnitTest.new("MyTest") with: {

def testAsyncWhenElapsed() {

when: 2.seconds elapsedWithFuture: {
self.assertEquals(3,1+2);
s

3

1

>MyTest.runTest()

Far References & Disconnections

® Far references keep referring the remote object

upon a disconnection!

)

Failure Handling

whenever: InstantMessenger discovered: {lchat]

when: chat disconnected: {
system.println(“buddy offline”);
ks

when: chat reconnected: {
system.println(“buddy online”);

}

Permanent Disconnections

® But, the system cannot distinguish transient from
permanent disconnections.

® Limite lifetime of the remote object references:

Leasing [grey89, waldoO1]

&

49

Working with Leased Refs

import /.at.lang.leasedrefs;

® |easing integrated with remote references.

def session := object: {
def addItemToCart (anItem) { ... }
def checkOutCart() { ... }

}i

def leasedSession := lease: 1l.minutes for: session;

object serialization returns a leased far
reference rather than a far reference.

}

Working with Leased Refs

® Registering a closure that is executed when the
leased reference expires:

when: session expired: {
system.println("session with “ + remotePeer + timed out.");
//cleanup code for session

}i

® Observers can be placed in both client and server
side!

® An expired leased object reference behaves as
permanently disconnected far reference!

52

Working with Leased Refs

e Communication via asynchronous message passing,
except for == method.

® Managing life cycle of a leased object reference:

renew: leasedRef for: timelInterval

revoke: leasedRef

leaseTimeLeft: leasedRef .

51

Leasing Variants

renewOnCallLease: timeout for: object

® the leased reference gets renewed as long as it
receives messages.

singleCallLease: timeout for: object

® the leased reference gets revoked upon a succes
method call on the server object. ’

53

Leasing and Futures

receive(msg)@ue(seconds(10))

when: buddy<-receive(msg)@Due(seconds(10)) becomes: { |ack|
system.println(msg.content + " sent to: " + to)

} catch:(TimeoutException using: { |e]
system.println("msg: "

}i

+ msg.content + " timed out.");

® Future is passed as a singlecalllLease Which expir
® upon reception of a resolve Or ruin messag

® due to a timeout

