
7 GOSHOPPING: DEBUGGING AMBIENTTALK PROGRAMS WITH REME-D

email: egonzale@vub.ac.be
office: 10F731

7 goShopping: Debugging AmbientTalk programs with
REME-D

Lab session material available at Pointcarre, and at http://soft.vub.ac.be/
amop/teaching/dmpp

7.1 Idea
The purpose of this exercise is get you familiarized with reflective programming in Am-
bientTalk by means of REME-D 1, a distributed debugger designed for AmbientTalk
applications, and reflective programming in AmbientTalk. REME-D has been entirely
implemented in AmbientTalk using the language reflective capabilities and it has been
integrated in the Eclipse AmbientTalk plugin (IdeAT) using the Eclipse Debug Frame-
work. The session consists of two separate parts:

• First, you will get familiarized with REME-D features and Eclipse GUI. The lab
material provides you with an application that contains errors. You should fix
them using REME-D debugging features.

• Afterwards, you will extend REME-D’s functionalities with a new sort of break-
point, and step command.

7.2 Part 1: Finding bugs in the goShopping application
The provided application is a sample shopping application that needs to process pur-
chase orders. Before the shop can acknowledge the order, it must verify three things:
1) whether the requested items are still in stock, 2) whether the customer has provided
valid payment information and 3) whether a shipper is available to ship the order in
time. Figure 1 depicts this application which consists of 5 actors. The application’s
default actor is supposed to host the application GUI, while the buyer actor processes
order purchases. In response to a gomessage, the buyer actor sends out three messages
to the product, account and shipper actors (as also shown in the figure).

To keep this part simple, we do not make use of futures. Instead, the buyer makes
use of an AsyncAnd abstraction. The constructor of an AsyncAnd object takes two
parameters: a number indicating how many affirmative replies the AsyncAnd should
receive before it invokes callback<-run(true), and the callback object to no-
tify. The callback object thus needs to implement the message run(boolean). In
the goShopping application, all three actors simply send an affirmative reply to the
AsyncAnd callback. As a result, when you run the application, it should print the
following to the console “Got answer: true”.

Your task consists on fix and improve this application as follows:
1read as remedy

1

7 GOSHOPPING: DEBUGGING AMBIENTTALK PROGRAMS WITH REME-D
7.2 Part 1: Finding bugs in the goShopping application

buyer Actor

shipper Actor

account Actor

product Actor

teller

partInStock

checkCredit

canDeliver

go

default Actor

Figure 1: The shopping application

(a) Currently the application contains a bug. If you run it, it prints “Got answer:
false” rather than “Got answer: true” . Run again the application now in debug
mode and fix the bug using REME-D debugging features.

Hint: You may want to set a breakpoint in the go message send and stepping
into its execution to check whether the contacted actors reply to the AsyncAnd
abstraction.

Hint 2: If you didn’t you catch the bug yet, you may want to set a breakpoint in
the run method to check whether the AsyncAnd abstraction works properly.

(b) Let’s use REME-D epidemic features to catch another bug. To this end, you
will need to use goShoppingSectionB.at file instead. It works similarly
than the described goShooping application but it employs futures instead of
using the explicit AsyncAnd abstraction. In addition, once the shop acknowl-
edges the order, it contacts a warranty broker to suggest the client a warranty for
the purchases item by means of the getExtendedWarranty asynchronous
message. To do so, the warranty broker contacts several insurance agencies, and
returns the best quote. However, it currently always returns an negative quota.
Use REME-D debugging features to fix this bug.

To reproduce the bug you need to:

1. run the warranty broker code with (stored in the warrantyBroker.at
provided in the lab session material) with -Xdebug option (so that this code
is debuggeable).

2. run in debug mode the goShoppingSectionB.at file. Note that this
file uses the goWithInsurance, rather than the go message which used
the explicit AsyncAnd abstraction.

Hint: Since after fixing the previous bug you know that the default actor gets
correctly the acknowledgement of the purchase order, you may want to set a
breakpoint on the getExtendedWarranty message send.

2

7 GOSHOPPING: DEBUGGING AMBIENTTALK PROGRAMS WITH REME-D
7.3 Part 2: Extending REME-D’s functionality

7.3 Part 2: Extending REME-D’s functionality
Now you are going to take the first steps to learn the reflective model of AmbientTalk
by modifying REME-D implementation to extend its functionality with the following
two new features:

Symbol breakpoints. A symbol breakpoint defines a breakpoint on a method name
corresponding to the given symbol. The actor execution pauses before the re-
ceiver invokes a method whose name is the given symbol. For example, when
setting a symbol breakpoint on the AmbientTalk symbol ‘foo, the AmbientTalk
actors running in debug mode will stop when they receive any asynchronous
message whose name corresponds to ‘foo.

Step Until command. A step until command defines a step command which steps
over the execution of a number of messages until the given message name is
found. For example, imagine that an AmbientTalk actor is paused and its mes-
sage queue contains <o<-foo | o<-bar() |o<-baz()>. If the user in-
struments the debugger to make a step until the symbol ‘baz, the actor will be
resume and execute its messages, and pause again when o<-baz() reaches the
top of the message queue.

Your task consists on adding a symbol breakpoint, and step command as follows:

(a) Extend REME-D’s breakpoints module to include the implementation of the
symbol breakpoint:

1. Add the definition of the symbol breakpoint in the breakpoints.at file
provided in the lab session material.
Hint: A symbol breakpoint can be implemented as an extension to a con-
ditional breakpoint tagged with the ReceiverBreakpoint breakpoint
type.

2. Since the IdeAT plugin does not offer GUI support for symbol breakpoints,
you will need to manually inject the breakpoint to the debugger manager to
test that the added breakpoint works. To this end, add a setSymbolBreak-
pointmethod to the localInterface object of the debugger manager
(implemented in the debuggerManager.at file). The method should
take as parameter a symbol, and it should first create a symbol breakpoint
and then, send it to all actors currently being debug.
Hint: The debugger manager provides a listLocalManagers method
that returns a table with all local managers currently in the debug session.

3. To test the newly added breakpoint type in REME-D, you can call the
setSymbolBreakpoint method by means of the “AT Debugger Man-
ager” console in Eclipse. You can access the debugger manager as follows
eclipseController.debuggerSessionBhv.

If your breakpoint implementation works, you should see that the GUI stops
before executing a method invocation with the given name :)

3

7 GOSHOPPING: DEBUGGING AMBIENTTALK PROGRAMS WITH REME-D
7.3 Part 2: Extending REME-D’s functionality

(b) Extend REME-D stepping behaviour to include the implementation of the sym-
bol breakpoint as follows:

1. Add a stepOverUntilmethod on the interfaceDebuggerManager
object of the local manager which works similarly to the other step com-
mand, i.e sets the pause state to STEPUNTIL but schedules all messages
from the actor inbox.

2. Modify the schedule meta level method to check if an actor is in step
until mode when an actor is asked to schedule a message from its inbox. If
this happens you will need to check whether the message scheduled is the
one that has to pause again the actor’s execution.
Hint: You can make use of a symbol breakpoint to check if the message
needs to pause again the execution of the actor.

3. To test the newly added step command, again, you will need to first add
a stepOverUntil method to the localInterface object of the de-
bugger manager and call it by means of the “AT Debugger Manager” con-
sole in Eclipse.

4

