
Metalevel Engineering in
AmbientTalk

REME-D: a Reflective Epidemic Message-Oriented Debugger
Elisa Gonzalez Boix
egonzale@vub.ac.be

86

Well-known Meta Programs

87

Debugger Compiler Class Browser

Interpreter
Object inspector

Language Extensions
Monitors

Profilers

REME-D
from a user perspective

88

REME-D

• Distributed debugger designed for AmOP
programs.

• It is written in AmbientTalk itself
reflectively.

• UI implemented on top of the Eclipse
Debug Framework.

89

Intercession

• Online distributed debugger:

• asynchronous message sending and reception.

Message-Oriented Debugging

90

Message-Oriented

actor view

inspect
mailbox

and
behaviour

editor

pause/resume
actors

between turns

debug element view

Message Breakpoints

91

Actor suspended when the message
reaches the head of the mailbox

Breakpoints are
configurable per VM.

Breakpoints on loc of asynchronous message
sends (the <- operator)

Message Resolved Breakpoints

92

Breakpoints on loc of asynchronous message
sends (the <- operator)

Actor suspended when the message
with the return value of the
computation reaches the head of
the mailbox

Method Breakpoints

93
Breakpoints on loc of a method definition

Actor suspended when any
message defined on the given line
of code reaches the head of the
mailbox

Step-by-Step Execution

• Step Over a message

• Step Into a message

• Step Return a message

94

• Step-into to navigate on the messages sends as a
result of the execution of the paused message.

Step Into

95

current actor and
receiver actors of

messages sent
within a turn are

paused.

Step Return

• Return from a message is paused.

96

the receiver of the
return value of a

futurized messages
sent is paused.

Open Debugging Sessions

• It does not require to define a priori the devices
participating in a debugging session:

97

Epidemic

Network failures ≠ exceptions
actor removed from the debugging session,
and resume if necessary.

Actors added dynamically to a debugging session
upon receiving a message with breakpoint (*).

(*) Actor needs to be declared debuggeable: lauched with -Xdebug option.

Open Debugging Sessions

98

infected actors are not stopped when the session ends!

infected actors
are added to the

debug view

REME-D

99

• More info at:

http://code.google.com/p/ambienttalk/wiki/
DebuggingInEclipse

• For the session:

• Don’t forget to open the Debug Element View.

• Always debug your app with -n option.

• Be patient with the Eclipse GUI :)

REME-D

• More info at:

http://code.google.com/p/ambienttalk/wiki/
DebuggingInEclipse

• For the session:

• Don’t forget to open the Debug Element View.

• Be patient with the Eclipse GUI :)

100

REME-D
from a programmer perspective

101

AT VM

Eclipse Plugin
core and ui

Debugger Device

 JavaVM

Application Actor

 Eclipse Controller

 JavaVM

AT VM

commands events

Application Actor

REME-D Architecture

102

Each actor being debug carries
a local manager

debugger
manager

listener for commands
from eclipse GUI

listener for events from
debugger manager

Debugger Manager

• Manages the debugging session:

• Keeps list of actors in debug.

• Enables communication with GUI and local
managers:

• Local Interface

• Remote interface

103

communication
from GUI

communication
from local managers

Debugger Manager

104

def localInterface := object: {
	 def breakpointActiveOn(filename, lineNumber, listVMIds);
	 def clearBreakpoint(filename, lineNumber);
	 def setBreakpoint(filename, lineNumber, messageResolved := false);
	 def stepReturn(actorId);
	 def stepOver(actorId);
	 def stepInto(actorId);
	 def resumeActor(actorId);
	 def pauseActor(actorId);
	 def loadMainCode(actorId);
	 def setupDebugSession(debugEventList);
	 def getLocalManagerById(localManagerId);
	 def listLocalManagers();
};

methods called from
EclipseController.commandBehaviour

accessible from Eclipse
Plugin in AT Debugger Manager

Console

eclipseController.debuggerSessionBhv.stepOver(-1253);

Debugger Manager

105

methods called
from

localManager

	 def remoteInterface := object: {
	 	 def actorStarted(actorId, sourceLocation, frLocalManager);
	 	 def actorPaused(actorId,actorState);
	 	 def actorResumed(actorId);
	 	 def updateInbox(actorId, msg, addition := true);
	 	 def updateMessageSent(actorId, msg);
	 };

methods
in turn call

EclipseController.debuggerEventListener

Local Manager

106

methods called
from

debuggerManagerdef interfaceDebuggerManager := object: {
 def evaluateCode();
 def startInDebugMode(tableCodeBreakpoints);
 def pause();
 def resume();
 def stepInto();
 def stepReturn();
 def stepOver();
 def stepReturn();
 def stepInto();
 def addBreakpoint(breakpoint);
 def removeBreakpoint(breakpoint);
};

• Actor protocol overriding 3 meta-level methods:

Local Manager

107

 extend: actor with: {
	 def actorId := debuggerUtilModule.generateRandomId();

	 def debuggingState := INITIAL;
	 def pausedState := INITIAL;

	 def debuggerManager := nil;

	 def inbox := [];

	 def senderBreakpoints := atHashMap.new();
	 def receiverBreakpoints := atHashMap.new();
	
	 ...

	 def send(rcv, msg);
	 def schedule(rcv, msg);
	 def serve();
	
	 def interfaceDebuggerManager := object: { ...}
	
	 };
};

debugging
related messages annotated with

@Debug

Breakpoints

108

codeBreakpoint conditionalBreakpoint

message
breakpoint

message resolve
breakpoint

method
breakpoint

future
breakpoint

must import
the breakpoint trait

Breakpoints

109

def TBreakpoint := isolate:{
	 	 def condition;
	 	 def breakpointId;
	 	 def breakpointTypes;
	 	
	 	 def init(cond, types, bId := /.at.support.debugger.util.generateRandomId()){
	 	 	 self.breakpointId := bId;
	 	 	 self.condition := cond;
	 	 	 self.breakpointTypes := types;
	 	 };
	 	 def getBreakpointId() {self.breakpointId};
	 	 def onEntry() {true};
	 	 def ==(otherBreakpoint) {
	 	 	 self.getBreakpointId == otherBreakpoint.getBreakpointId
	 	 };
	 	 def matches(rcv,msg) {
	 	 	 self.condition(rcv,msg);
	 	 };
	 	 def print() {
	 	 	 "<" + self.toString() + ":taggedAs:" + self.breakpointTypes + ">";
	 	 };
	 	 def getBreakpointTypeTags() { self.breakpointTypes };
	 	 def isTaggedAs(typeTag) {
	 	 	 { |return|
	 	 	 	 self.breakpointTypes.each: { |t|
	 	 	 	 	 if: t.isSubtypeOf(typeTag) then: { return(true)}
	 	 	 	 };
	 	 	 	 false;
	 	 	 }.escape();
	 	 };
	 };

SenderBreakpoint and/or
ReceiverBreakpoint

closure takes as parameter
message and receiver

Breakpoints

110

	 def methodBreakpoint := extendIsolate: codeBreakpoint with:{
	 	 def init(name, number) {
	 	 	 def cond := script: { |rcv, msg|
	 	 	 	 def res := false;
	 	 	 	 if: ((reflect: rcv).respondsTo(msg.selector)) then: {
	 	 	 	 	 def method := (reflect: rcv).grabMethod(msg.selector);
	 	 	 	 	 def sourceLocation := /.at.support.util.getSourceLocation(method);
	 	 	 	 	 if: (nil != sourceLocation) then: {
	 	 	 	 	 	 if: ((name == sourceLocation.fileName).and:{number == sourceLocation.line}) then: {
	 	 	 	 	 	 	 res := true;
	 	 	 	 	 	 };
	 	 	 	 	 };
	 	 	 	 };
	 	 	 	 res;
	 	 	 } carrying: `[name, number];
	 	 	 super^init(name, number, cond, [/.at.support.debugger.util.ReceiverBreakpoint]);
	 	 };
	 	 def toString() {
	 	 	 "method-breakpoint:"+ super^toString();
	 	 };
	 };

• For the session:

• Don’t forget to make the Eclipse plugin point to
the atlib in your project.

REME-D

111

