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Well-known Meta Programs
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Debugger Compiler Class Browser

Interpreter
Object inspector

Language Extensions
Monitors

Profilers



REME-D
from a user perspective
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REME-D

• Distributed debugger designed for AmOP 
programs.

• It is written in AmbientTalk itself 
reflectively.

• UI implemented on top of the Eclipse 
Debug Framework. 
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Intercession



• Online distributed debugger:

• asynchronous message sending and reception. 

Message-Oriented Debugging
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Message-Oriented

actor view

inspect 
mailbox 

and 
behaviour

editor

pause/resume 
actors 

between turns

debug element view



Message Breakpoints
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Actor suspended when the message 
reaches the head of the mailbox

Breakpoints are 
configurable per VM.

Breakpoints on loc of asynchronous message 
sends (the <- operator)



Message Resolved Breakpoints
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Breakpoints on loc of asynchronous message 
sends (the <- operator)

Actor suspended when the message 
with the return value of the 
computation reaches the head of 
the mailbox



Method Breakpoints
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Breakpoints on loc of a method definition

Actor suspended when any 
message defined on the given line 
of code reaches the head of the 
mailbox



Step-by-Step Execution

• Step Over a message

• Step Into a message

• Step Return a message
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• Step-into to navigate on the messages  sends  as a 
result of the execution of the paused message.

Step Into
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current actor and 
receiver actors of 

messages sent 
within a turn are 

paused.



Step Return

• Return from a message is paused.
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the receiver of the 
return value of a 

futurized messages 
sent is paused.



Open Debugging Sessions

• It does not require to define a priori the devices 
participating in a debugging session:
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Epidemic

Network failures ≠ exceptions
actor removed from the debugging session, 
and resume if necessary.

Actors added dynamically to a debugging session
upon receiving a message with breakpoint (*).

(*) Actor needs to be declared debuggeable: lauched with -Xdebug option.



Open Debugging Sessions
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infected actors are not stopped when the session ends!

infected actors 
are added to the 

debug view



REME-D
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• More info at:  

http://code.google.com/p/ambienttalk/wiki/
DebuggingInEclipse

• For the session:

• Don’t forget to open the Debug Element View.

• Always debug your app with -n option.

• Be patient with the Eclipse GUI :)



REME-D

• More info at:  

http://code.google.com/p/ambienttalk/wiki/
DebuggingInEclipse

• For the session:

• Don’t forget to open the Debug Element View.

• Be patient with the Eclipse GUI :)
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REME-D
from a programmer perspective
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AT VM

Eclipse Plugin
core and ui

Debugger Device 

  JavaVM

Application Actor

 Eclipse Controller

  JavaVM

AT VM

commands events

Application Actor

REME-D Architecture
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Each actor being debug carries 
a local manager

debugger 
manager

listener for commands 
from eclipse GUI

listener for events from 
debugger manager



Debugger Manager

• Manages the debugging session:

• Keeps list of actors in debug.

• Enables communication with GUI and local 
managers:

• Local Interface 

• Remote interface
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communication 
from GUI

communication 
from local managers



Debugger Manager
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def localInterface := object: {
	 def breakpointActiveOn(filename, lineNumber, listVMIds);
	 def clearBreakpoint(filename, lineNumber);
	 def setBreakpoint(filename, lineNumber, messageResolved := false);
	 def stepReturn(actorId);
	 def stepOver(actorId);
	 def stepInto(actorId);
	 def resumeActor(actorId);
	 def pauseActor(actorId);
	 def loadMainCode(actorId);
	 def setupDebugSession(debugEventList);
	 def getLocalManagerById(localManagerId);
	 def listLocalManagers();
};

methods called from
EclipseController.commandBehaviour

accessible from Eclipse 
Plugin in AT Debugger Manager 

Console

eclipseController.debuggerSessionBhv.stepOver(-1253);



Debugger Manager
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methods called 
from

localManager

	  def remoteInterface := object: {
	 	  def actorStarted(actorId, sourceLocation, frLocalManager);
	 	  def actorPaused(actorId,actorState);
	 	  def actorResumed(actorId);
	 	  def updateInbox(actorId, msg, addition := true);
	 	  def updateMessageSent(actorId, msg);
	  };

methods 
in turn call

EclipseController.debuggerEventListener



Local Manager
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methods called 
from

debuggerManagerdef interfaceDebuggerManager := object: {
 def evaluateCode();
 def startInDebugMode(tableCodeBreakpoints);
 def pause();
 def resume();
 def stepInto();
 def stepReturn();
 def stepOver();
 def stepReturn();
 def stepInto();
 def addBreakpoint(breakpoint);
 def removeBreakpoint(breakpoint);
};



• Actor protocol overriding 3 meta-level methods: 

Local Manager
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  extend: actor with: {
	 def actorId := debuggerUtilModule.generateRandomId();

	 def debuggingState := INITIAL; 
	 def pausedState := INITIAL;

	 def debuggerManager := nil;

	 def inbox := [];

	 def senderBreakpoints := atHashMap.new();
	 def receiverBreakpoints := atHashMap.new();
	
	 ...

	 def send(rcv, msg);
	 def schedule(rcv, msg);
	 def serve(); 
	
	 def interfaceDebuggerManager := object: { ...}
	
	 };
};

debugging 
related messages annotated with 

@Debug



Breakpoints
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codeBreakpoint conditionalBreakpoint

message 
breakpoint

message resolve
breakpoint

method
breakpoint

future
breakpoint

must import 
the breakpoint trait



Breakpoints
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def TBreakpoint := isolate:{
	 	 def condition;
	 	 def breakpointId;
	 	 def breakpointTypes;
	 	
	 	 def init(cond, types, bId := /.at.support.debugger.util.generateRandomId()){
	 	 	 self.breakpointId := bId;
	 	 	 self.condition := cond;
	 	 	 self.breakpointTypes := types;
	 	 };
	 	 def getBreakpointId() {self.breakpointId};
	 	 def onEntry() {true};
	 	 def ==(otherBreakpoint) {
	 	 	 self.getBreakpointId == otherBreakpoint.getBreakpointId
	 	 };
	 	 def matches(rcv,msg) {
	 	 	 self.condition(rcv,msg);
	 	 };
	 	 def print() {
	 	 	 "<" + self.toString() + ":taggedAs:" + self.breakpointTypes + ">";
	 	 };
	 	 def getBreakpointTypeTags() { self.breakpointTypes };
	 	 def isTaggedAs(typeTag) {
	 	 	 { |return|
	 	 	 	 self.breakpointTypes.each: { |t| 
	 	 	 	 	 if: t.isSubtypeOf(typeTag) then: { return(true)}
	 	 	 	 };
	 	 	 	 false;
	 	 	 }.escape();
	 	 };
	 };

SenderBreakpoint and/or 
ReceiverBreakpoint

closure takes as parameter 
message and receiver



Breakpoints
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	 def methodBreakpoint := extendIsolate: codeBreakpoint with:{
	 	 def init(name, number) {
	 	 	 def cond := script: { |rcv, msg|
	 	 	 	 def res := false;
	 	 	 	 if: ((reflect: rcv).respondsTo(msg.selector)) then: {
	 	 	 	 	 def method :=  (reflect: rcv).grabMethod(msg.selector);
	 	 	 	 	 def sourceLocation := /.at.support.util.getSourceLocation(method);
	 	 	 	 	 if: (nil != sourceLocation) then: {
	 	 	 	 	 	 if: ((name == sourceLocation.fileName).and:{number == sourceLocation.line}) then: {
	 	 	 	 	 	 	 res := true;
	 	 	 	 	 	 };
	 	 	 	 	 };
	 	 	 	 };
	 	 	 	 res;
	 	 	 } carrying: `[name, number]; 
	 	 	 super^init(name, number, cond, [/.at.support.debugger.util.ReceiverBreakpoint]);
	 	 };
	 	 def toString() {
	 	 	 "method-breakpoint:"+ super^toString();
	 	 };
	 };



• For the session:

• Don’t forget to make the Eclipse plugin point to 
the atlib in your project.

REME-D
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