
8 OMNIREFERENCES: BUILDING GROUP COMMUNICATION
ABSTRACTIONS

Elisa Gonzalez Boix (email:egonzale@vub.ac.be, office:10F731)
Jorge Vallejos (email:jvallejo@vub.ac.be, office:10F724)

8 Omnireferences: Building Group Communication Ab-
stractions

Language reference and tutorial available at http://soft.vub.ac.be/amop
Lab session material available http://soft.vub.ac.be/˜egonzale

8.1 Idea
The purpose of this exercise is to experiment with language constructs for program-
ming mobile distributed systems. More concretely, you will implement reflectively in
AmbientTalk a language abstraction for group communication. Communicating with
groups of remote objects is important when considering cooperation in decentralized
networks such as mobile networks. Applications are often interested in communicating
with only proximate devices, i.e. devices currently collocated. The application cannot
know beforehand the number of such proximate devices as it may vary as the user
moves about. In this exercise, we will implement a group communication abstraction
called an omnireference which denotes all remote objects of the same interface which
are available for communication. An omnireference allows 1-to-many interactions, i.e.
a client object can interact with various remote objects with a single message send.

8.2 Design of the omnireference
We will implement an omnireference as a special referencing abstraction that transpar-
ently discovers and binds to all remote objects of a particular service type. In a previous
session, you program part of a mobile game called Flikken, in which players broadcast
their position to nearby players to orient themselves in the campus and coordinate their
movements. Considering that players are service objects exported under the Player
service type, an omnireference to discover proximate players can be created as follows:

def nearbyPlayers := omnireference: Player;

The omnireference: construct initiates a service discovery request for remote
objects exported with the given service tag and immediately returns nil. In this exam-
ple, the omnireference denotes the set of proximate objects exported to the network
with the Player service type. Whenever a matching remote object is discovered, it is
added to the receivers of the omnireference. The receivers of an omnireference are the
set of objects that an omnireference binds to.

An omnireference follows the rules of inter-actor message passing and operate
asynchronously. In our example, a policeman could use the nearbyPlayers om-
nireference to update his info with nearby team member whenever his position changes
as follows:

nearbyPlayers <-receivePlayerPosition(myPlayerInfo);

1

8 OMNIREFERENCES: BUILDING GROUP COMMUNICATION
ABSTRACTIONS 8.3 Implementing the omnireference

When a client object sends a message to the service object, it does not wait for
the message to be delivered to the omnireference’s receivers. When the omnireference
receives the message, it will forward the message to each receiver if the receiver is
connected. If the receiver is disconnected upon message reception, it accumulates the
message internally, and forwards it whenever it becomes reconnected at a later point in
time.

8.3 Implementing the omnireference
We will implement an omnireference starting from a skeleton code shown below (also
available in the session material):

def makeOmniRefMirror(serviceType){
mirror: {

def receivers := // to store available receivers matching the service type

// override the necessary MOP methods

// register service discovery of receivers
whenever: serviceType discovered: { |potentialReceiver|
//...
};

};
};

//public interface of the module
def OmniRefModule := object: {

//creates an omnireference for a certain service type
def omnireference: serviceType {

//...
};

};

An omnireference is implemented as an empty wrapper object which is mirrored by
a custom mirror (created by invoking the makeMultiRefMirror function). Such
mirror should override certain methods of the MOP to implement the explained design
as follows:

(a) Complete the skeleton code to implement an omnireference which passes the
testAsyncBasicFunctionality unit test provided with the skeleton code.

Note: Assume for now that the messages do not require return values.

(b) Client objects should be able to start sending messages to the omnireference be-
fore it is bound to any receiver, causing the omnireference to accumulate those
messages until a receiver has been discovered. Each time a new receiver is dis-
covered, it should get all message accumulated in the omnireference. Adapt your
implementation to provide this functionality (if necessary) and check that your
code passes the testAsyncMessagesAreNotLostWhileUnbound unit
test that checks this.

(c) Extend the omnireference to deal with the results returned from an asynchronous
message.

2

8 OMNIREFERENCES: BUILDING GROUP COMMUNICATION
ABSTRACTIONS 8.3 Implementing the omnireference

As you know, AmbientTalk provides futures to deal with return values in asyn-
chronous message passing. AmbientTalk also supports multifutures, futures that
can be resolved or ruined multiple times. A multifuture itself represents a col-
lection of values and/or exceptions as a whole. A multifuture supports the same
operations as a regular future. This means it acts as implicit callback for the
messages sent and allows the registration of observer closures. There exist three
different ways in which observers can be registered with a multifuture:

– when: observers are triggered only on the first value or exception with
which the multifuture is resolved or ruined

– whenEach: observers are triggered on each value or exception of the mul-
tifuture

– whenAll: observers are triggered at most once, when the multifuture can
guarantee that no further results will be gathered.

Make use of the multifutures abstraction (available at at/lang/multifutu-
res.at) to handle return values of the messages sent to an omnireference.
The testAsyncMessagesWithReturnValue unit test is provided with
the skeleton code to help you test this functionality.

(d) As said before, when a receiver is discovered, it should get all messages accu-
mulated to the omnireference. But, if a receiver disconnects and reconnects back
in time it should only receive those messages which didn’t receive during the
disconnected time (not all the messages buffered in the omnireference). Add a
unitest that checks that functionality.

Hint: The disconnect: o construct disconnects all far references to the given ob-
ject triggering the when:disconnected listeners. If ’o’ is already a far reference,
the construct only disconnects this far reference.

3

