
Applying Dynamic Analysis in a Legacy Context: An Industrial Experience
Report

Andy Zaidman1, Bram Adams2, and Kris De Schutter2

1LORE, Department of Mathematics and Computer Science, University of Antwerp, Belgium,
Andy.Zaidman@ua.ac.be

2SEL, Department of Information Technology (INTEC), University of Ghent, Belgium
{Bram.Adams, Kris.DeSchutter}@ugent.be

Abstract

This paper describes our experiences with applying dy-
namic analysis solutions with the help of Aspect Orientation
(AO) on an industrial legacy application written in C. The
purpose of this position paper is two-fold: (1) we want to
show that the use of Aspect Orientation to perform dynamic
analysis is particularly suited for legacy environments and
(2) we want to share our experiences concerning some typ-
ical pitfalls when applying any reverse engineering tech-
nique on a legacy codebase.

1. Introduction

Legacy software is all-around: software that is still very
much useful to an organization – quite often evenindis-
pensable– but a burden nevertheless. A burden because
the adaptation, integration with newer technologies or sim-
ply maintenance to keep the software synchronized with the
needs of the business, carries a cost that is too great. This
burden can even be exaggerated when the original develop-
ers, experienced maintainers or up-to-date documentation
are not available [10, 5, 8, 6].

Apart from a status-quo scenario, in which the business
has to adapt to the software, a number of scenarios are fre-
quently seen:

1. Rewrite the application from scratch, from the legacy
environment, to the desired one, using a new set of
requirements [4].

2. Reverse engineer the application and rewrite the appli-

cation from scratch, from the legacy environment, to
the desired one [4].

3. Refactor the application. One can refactor the old ap-
plication, without migrating it, so that change requests
can be efficiently implemented; or refactor it to mi-
grate it to a different platform.

4. Often, in an attempt to limit the costs, the old appli-
cation is ”wrapped” and becomes a component in, or
a service for, a new software system. In this scenario,
the software still delivers its useful functionality, with
the flexibility of a new environment [4]. This works
fine and the fact that the old software is still present is
slowly forgotten. This leads to a phenomenon which
can be called theblack-box syndrome: the old applica-
tion, now component or service in the new system, is
trusted for what it does, but nobody knows – or wants
to know – what goes on internally (white box).

5. A last possibility is a mix of the previous options, in
which the old application is seriously changed before
being set-up as a component or service in the new en-
vironment.

Certainly for scenarios 2, 3, 4 and 5, the software engi-
neer would ideally want to have:

• a good understanding of the application in order to start
his/her reengineering operation (or in order to write ad-
ditional tests before commencing reengineering)[9]

• a well-covering (set of) regression test(s) to check
whether the adaptations that are made, are behavior-
preserving[6]

However, in practice, legacy applications seldom have up to
date documentation available [8], nor do they have a well-
covering set of tests.

1



The actual goals of this experiment are to (1) regain
lost knowledge, (2) determine test coverage and (3) iden-
tify problematic structures in the source code. For this, we
build upon a number of recently developed dynamic analy-
sis techniques that were developed for object-oriented soft-
ware [12, 11]. The emphasize for this paper however, is
more on the pitfalls we encountered along the way when
applying the different techniques on a legacy system.

This paper is organized as follows: Section2 starts
with a description of the case study. Section3 introduces
our AOP implementation, while Section4 briefly discusses
the dynamic analysis solutions we used. Section5 men-
tions some typical legacy environment pitfalls we stumbled
across. Section6 concludes and points to future work.

2 Case study

The industrial partner that we cooperated within the con-
text of this research experiment isKoninklijke Apothekersv-
ereniging Van Antwerpen(KAVA) 1. Kava is a non-profit
organization that groups over a thousand Flemish pharma-
cists. While originally safeguarding the interests of the
pharmaceutical profession, it has evolved into a full fledged
service-oriented provider. Among the services they offer is
a tarification service – determining the price of medication
based on the patient’s medical insurance. As such they act
as a financial and administrative go-between between the
pharmacists and the national healthcare insurance institu-
tions.

Kava was among the first in its industry to realize the
need for an automated tarification process, and have taken
it on themselves to deliver this service to their members.
Some 10 years ago, they developed a suite of applications
written in non-ANSI C for this purpose. Due to successive
healthcare regulation and technology changes they are very
much aware of the necessity to adapt and reengineer this
service.

Kava has just finished the process of porting their ap-
plications to fully ANSI-C compliant versions, running on
Linux. Over the course of this migration effort, it was noted
that documentation of these applications was outdated. This
provided us with the perfect opportunity to undertake our
experiments.

As a scenario for our dynamic analysis, the developers
told us that they often use the so-calledTDFSapplication
as a final check to see whether adaptations in the system
have any unforeseen consequences. As such, it should be
considered as a functional application, but also as a form of
regression test.

1http://www.kava.be/

The TDFS-application finally produces a digital and de-
tailed invoice of all prescriptions for the healthcare insur-
ance institutions. This is the end-stage of a monthly control-
and tariffing process and acts also as a control-procedure as
the results are matched against the aggregate data that is
collected earlier in the process.

3. AOP for legacy environments

We recently developed a framework for introducing AOP
in legacy languages like Cobol [7] and C [2, 1]. The latter is
calledaspicere2. This paper appliesaspicere on an indus-
trial case study, provided by one of our partners in the AR-
RIBA (Architectural Resources for the Restructuring and
Integration of Business Applications) research-project3.

Our industrial partner has a large codebase, mainly writ-
ten in C, that’s why we usedaspicere for our experiments.

4. Dynamic analysis solutions

In total we applied 3 dynamic analysis solutions. This
section will briefly introduce each of them.

Webmining This solution identifies the most important
classes in a system with the help of a heuristic that uses
dynamic coupling measures. The idea is based on the fact
that tightly coupled classes, can heavily influence the con-
trol flow. To add a transitive measure to the binary relation
of coupling, webmining principles are used. For a more
detailed description of this technique, we refer you to a pre-
vious work [11].

Frequency analysis This idea is based on the concept of
Frequency Spectrum Analysis, first introduced by Thomas
Ball [3]. It is centered around the idea that the relative ex-
ecution frequency of methods or procedures can tell some-
thing about which methods or procedures are working to-
gether to reach a common goal. For more details we refer
to [12].

Test coverage When refactoring or reengineering a sys-
tem, certain functionality often has to be preserved. Having
a well-covering set of tests can be very helpful for determin-
ing whether the adaptations to the code are indeed behavior
preserving. By establishing the test coverage of modules
and procedures, we are able to have a clear view of which
parts of the system are tested.

2”aspicere” is a Latin verb and means ”to look at”. Its past participle is
”aspectus”, so the link with AOP is pretty clear.

3Sponsored by the IWT, Flanders. Also see: http://www.iwt.be

2

http://www.kava.be/


gcc -c -o file.o file.c

Figure 1. Original makefile.
gcc -E -o tempfile.c file.c
cp tempfile.c file.c
aspicere -i file.c -o file.c \

-aspects aspects.lst
gcc -c -o file.o file.c

Figure 2. Adapted makefile.
.ec.o:

$(ESQL) -c $*.ec
rm -f $*.c

Figure 3. Original makefile with esql prepro-
cessing.

5. Pitfalls of dynamic analysis in a legacy envi-
ronment

Applying aspects onto a base program, is intended to
happen transparently for the end user. However, while using
our experimental legacy AOP tools during our experiments
at our industrial partner, we encountered several problems.
This section describes some of these.

5.1 Adapting the build process

The Kava application usesmake to automate the build
process. Historically, all 269 makefiles were hand-written
by several developers, not always using the same coding-
conventions. During a recent migration operation from
UnixWareto Linux, a significant number of makefiles has
been automatically generated with the help ofautomake4.
Despite this, the structure of the makefiles remains hetero-
geneous, a typical situation in (legacy) systems.

We built a small tool, which parses the makefiles and
makes the necessary adaptations. (A typical example is
shown in Figures1 and 2.) However, due to the hetero-
geneous structure, we weren’t able to completely automate
the process, so a number of makefile-constructions had to
be manually adapted. The situation becomes more difficult
when e.g. Informix esql preprocessing needs to be done.
This is depicted in Figures3 and4.

Using our scripts to alter the makefiles takes a few sec-
onds to run. Detecting where exactly our tool failed and
making the necessary manual adaptations took us several
hours.

4Automake is a tool that automatically generates makefiles starting
from configuration files. Each generated makefile complies to the GNU
Makefile standards and coding style. Seehttp://sources.redhat.
com/automake/ .

.ec.o:
$(ESQL) -e $*.ec
chmod 777 *
cp ‘ectoc.sh $*.ec‘ $*.ec
esql -nup $*.ec $(C_INCLUDE)
chmod 777 *
cp ‘ectoicp.sh $*.ec‘ $*.ec
aspicere -verbose -i $*.ec -o \

‘ectoc.sh $*.ec‘ -aspects aspects.lst
gcc -c ‘ectoc.sh $*.ec‘
rm -f $*.c

Figure 4. Adapted makefile with esql prepro-
cessing.

5.2 Compilation

A typical compile cycle of the application consisting of
407 C modules takes around 15 minutes5. We changed the
cycle to:

1. Preprocess
2. Weave withaspicere
3. Compile
4. Link

This new cycle took around 17hoursto complete. The rea-
son for this substantial increase in time can be attributed to
several factors, one of which may be the time needed by
the inference engine for matching up advice and join points
(still unoptimized).

5.3 Legacy issues

Even though Kava recently migrated from UnixWare to
Linux, some remnants of the non-ANSI implementation are
still visible in the system. In non-ANSI C, method dec-
larations with empty argument list are allowed. Actual
declaration of their arguments is postponed to the corre-
sponding method definitions. As is the case with ellipsis-
carrying methods, discovery of the proper argument types
must happen from their calling context. Because this type-
inferencing is rather complex, it is not fully integrated yet
in aspicere. Instead of ignoring the whole base program,
we chose to ”skip” (as yet) unsupported join points, intro-
ducing some errors in our measurements. To be more pre-
cise, we advised 367 files, of which 125 contained skipped
join points (one third). Of the 57015 discovered join points,
there were only 2362 filtered out, or a minor 4 percent. This
is likely due to the fact that in a particular file lots of invoca-
tions of the same method have been skipped during weav-
ing, because it was called multiple times with the same or

5Timed on a Pentium IV, 2.8GHz running Slackware 10.0

3

http://sources.redhat.com/automake/
http://sources.redhat.com/automake/


similar variables. This was confirmed by several random
screenings of the code.

Another fact to note is that we constantly opened, flushed
and closed the tracefile, certainly a non-optimal solution
from a performance point of view. Normally,aspicere’s
weaver transforms aspects into plain compilation modules
and advice into ordinary methods of those modules. So, we
could get hold of a static file pointer and use this through-
out the whole program. However, this would have meant
that we had to revise the whole make-hierarchy to link these
uniques modules in. Instead, we added a “legacy” mode to
our weaver in which advice is transformed to methods of
the modules part of the advised base program. This way,
the make-architecture remains untouched, but we lose the
power of static variables and methods.

5.4 Scaleability issues

Running the program Not only the compilation was in-
fluenced by our aspect weaving process. Also the running
of the application itself. The scenario we used (see Sec-
tion 2), normally runs in about 1.5 hours. When adding our
tracing advice, it took 7 hours due to the frequent file IO.

Tracefile volume The size of the logfile also proved prob-
lematic. The total size is around 90GB, however, the linux
2.4 kernel Kava is using was not compiled with large file
support. We also hesitated from doing this afterwards be-
cause of the numerous libraries used throughout the various
applications and fear for nasty pointer arithmetic waiting to
grab us. As a consequence, only files up to 2GB could be
produced. So, we had to make sure that we split up the
logfiles in smaller files. Furthermore, we compressed these
smaller logfiles, to conserve some diskspace.

Effort analysis Table 1 gives an overview of the time-
effort of performing each of the analyses. As you can see,
even a trouble-free run (i.e. no manual adaptation of make-
files necessary) would at least take 29 hours.

6. Conclusion and future work

This paper describes our experiences with applying dy-
namic analysis in an industrial legacy C context. We used
two dynamic analysis techniques that we had previously
developed and validated for Object Oriented software and
added a simple test coverage calculation. Furthermore, this
paper describes how we usedaspicere, our “AspectC” im-
plementation for collecting the traces we needed for per-
forming the dynamic analyses.

Task Time Previously
Makefile adaptations 10 s –
Compilation 17h 38min 15min
Running 7h 1h 30min
Code coverage 5h –
Frequency analysis 5h –
Webmining 10h –

Total 44h 38min 10s 1h 45min

Table 1. Overview of the time-effort of the
analyses.

This paper focusses on some common problems we
came across when trying to collect an event trace from a
legacy C application usingaspicere. Some of these prob-
lems can be catalogued as being technical, e.g. adapt-
ing heterogeneously structured makefiles or overcoming the
maximum file size limit of the operating systems.

Some other problems are perhaps more fundamental:

• Performing an effort analysis shows that collecting the
trace of the system takes more than 24 hours.

• Subsequently, any dynamic analysis solution, has to
cope with analyzing an event trace of around 90 GB.
Scaleability of the dynamic analysis solution is thus of
the utmost importance.

As such, we can conclude that for what should be con-
sidered a medium-scale application, we are already having
scaleability issues with our tools. As such, improving the
efficiency of our tools is one of our immediate concerns.

7. Acknowledgements

We would like to thank Kava for their cooperation and
very generous support.

Kris De Schutter and Andy Zaidman received support
within the Belgium research project ARRIBA (Architectural
Resources for theRestructuring andIntegration ofBusiness
Applications), sponsored by the IWT, Flanders. Bram
Adams is supported by a BOF grant from Ghent University.

References

[1] B. Adams, K. De Schutter, and A. Zaidman. AOP for legacy
environments, a case study. InProceedings of the 2nd Euro-
pean Interactive Workshop on Aspects in Software, 2005.

[2] B. Adams and T. Tourẃe. Aspect Orientation for C: Express
yourself. In3rd Software-Engineering Properties of Lan-
guages and Aspect Technologies Workshop (SPLAT), AOSD,
2005.

4



[3] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[4] K. Bennett. Legacy systems: Coping with success.IEEE
Software, 12(1):19–23, 1995.

[5] M. Brodie and M. Stonebreaker.Migrating Legacy Systems:
Gateways, Interfaces & The Incremental Approach. Morgan
Kaufmann, 1995.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz.Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

[7] R. Lämmel and K. D. Schutter. What does Aspect-Oriented
Programming mean to Cobol? InAOSD ’05, pages 99–110,
New York, NY, USA, 2005. ACM Press.

[8] D. L. Moise and K. Wong. An industrial experience in re-
verse engineering. InWCRE, pages 275–284, Washington,
DC, USA, 2003. IEEE Computer Society.

[9] H. M. Sneed. Program comprehension for the purpose of
testing. InIWPC, pages 162–171. IEEE Computer Society,
2004.

[10] H. M. Sneed. An incremental approach to system replace-
ment and integration. InCSMR, pages 196–206. IEEE Com-
puter Society, 2005.

[11] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to support
the program comprehension process. InCSMR, pages 134–
142. IEEE Computer Society, 2005.

[12] A. Zaidman and S. Demeyer. Managing trace data volume
through a heuristical clustering process based on event exe-
cution frequency. InCSMR, pages 329–338. IEEE Computer
Society, 2004.

5


