
 1

Abstract— A strategy and a storage framework are presented,

which allow to isolate business modelling issues from the
underlying persistency infrastructure The main objective is to
support a clean and maintainable application architecture.

The more general problem of mapping an information model
onto e.g. a relational database is addressed. It is shown that the
expressive power of existing object-oriented languages is
insufficient to bridge the semantic gap between the
representation of information in a business model and the way it
is persisted.

Two possible approaches are presented. One is based on the
techniques of aspect oriented software development, while the
other uses a more lightweight approach. In the latter, a
declarative tagging language is used, which allows specifying the
persistency characteristics of business object in a transparent
way. That description is extracted into an XML format, and then
used in run-time storage framework, which adds persistent
behaviour to the business objects.

.

I. INTRODUCTION
A storage framework must provide more than just
mechanically persisting the apparent state of objects. An
information model consists of classes, representing domain
relevant abstractions, as well as a description of the inter-
object collaborations, in terms of composition, associations,
etc. When mapping an information model to e.g. a relational
database, essential information is lost. This makes it difficult
to recreate, rather than reinstate, objects from persistent
storage.

There is also a semantic gap between information models
and what can be expressed with typical OO languages, such
as Java, especially when the persistent characteristics of
objects must be included. Mechanisms such as introspection

Manuscript received June 30, 2003.
G. Hoffman is with the Department of Information Technology, Ghent

University, (e-mail : Ghislain.Hoffman@Ugent.be).
M. Matar was with the Institute for Permanent Education, Ghent

University, Belgium, and is now with Bethlehem University, Palestine
Territories (e-mail : mmatar@bethlehem.edu).

H. Tromp is with the Department of Information Technology, Ghent
University (corresponding author : phone +32 9 264 3322, fax +32 9 264
3593, e-mail : herman.tromp@Ugent.be).

Koenraad Vandenborre is with Inno.com cva, Belgium (e-mail :
koenraad.vandenborre@inno.com)

or serialisation do not offer sufficient expressive power.

II. APPLICATION ARCHITECURE AND PERSISTENCY STRATEGY

A strategy for isolating business modelling issues from the
persistency layer must be defined, allowing optimal reuse of
domain abstractions and supporting a clean application
architecture.

A multi-tier architecture separates the business logic, which

Fig.1. A multi-tier architecture

is common to all applications in an organization, from
individual application logic (see fig.1). The latter is typically
implemented in the user interface tier, although a separate
presentation tier is preferably used.

Anyhow, the business logic is encapsulated in separate
classes that represent the business objects. This form of
encapsulation ensures that all applications use the same
business logic in a coherent way. More details are given by
Vandenborre et al. [8].

In order to cleanly design business objects, while
safeguarding the separation of business logic from
implementation issues, they should not contain anything that
indicates how they are stored or retrieved from the
underlying persistent storage mechanism. There is thus a
clear need for a well-defined separation of concerns between
the business logic tier and the persistency tier. This
evolution is clearly present in more recent software
methodologies. It enables software developers to separate
the writing of business logic from the use of middleware

Storage Framework Based Information
Modeling

Ghislain Hoffman, Muna Matar, Herman Tromp, Member ACM and IEEE Computer Society, and
Koenraad Vandenborre

Present
. logic

Appl.
logic

Busines
logic

Persist
. logic

 2

services. The J2EE environment, in view of transaction
management e.g., offers a prominent example of the
evolution from the development of proprietary middleware
code towards using standard middleware services.

The above implies that
• From a software engineering point of view, the

developer should not be bothered with persistency
issues

• From a business point of view, unambiguous
persistency is a major requirement

For these reasons, there is a rationale to look for an effective
persistency model.

Persisting an entity means extending its lifetime beyond
the lifetime of the application that created it. In achieving
this goal the developer is confronted with a number of
challenges:

• The entity can be saved in a relational database (the case
that will be considered in the remainder of this paper), but
might as well be stored in an XML repository, put in a
spreadsheet, or not be saved at all but recalculated from
other persisted entities;

• The functionality to deal with persisted entities (typically
select, create, update, delete) can be expressed using a
variety of mechanisms, such as a 4GL, stored procedures,
JDBS, entity beans, dedicated data access objects, a
proprietary API to an EIS, etc.;

• The issue whether an entity is used in a batch or on-line
processing mode may well influence its persistency
characteristics;

• Duplication of a data source may be needed for
performance reasons;

• The objects as implemented in a business model are
merely models of real life objects, and may have to
evolve. This raises a versioning problem;

• Since many classes in an object oriented domain model
need persistence, at different levels of granularity, the
persistency-related code gets scattered throughout the
code base. This is clearly a crosscutting concern, as
explained in section V, and if not dealt with properly,
severely decreases the maintainability and reusability of
the code.

As an example, consider the model of a simple invoicing

system, as shown in fig.2 [6]. In this business model, some
classes will have to be persisted. At this phase in the design
and development process, however, we only want to design
classes and abstractions that represent reaf-life entities. It is
only at a later stage that it will be decided which classes
should be made persistent and how this is done. The
important issue is that separation of concerns requires that
persistency issues and domain abstractions are designed and
implemented in a way that is as orthogonal and independent
as possible.

While the architectural principles as outlined in the
previous paragraphs are crucial for the development of new

applications, they are even more essential in an effort to
revitalise and migrate legacy systems. This is discussed in
more detail in e.g. [1] [2]. The architectural problems
encountered in legacy migration are quite similar to those in
new system development, but the obstacles to their
deployment are even more disturbing. In legacy systems,
user interface code, business logic and the persistency layer
are mostly always intermingled, which leads to a
maintenance nightmare.

Fig. 2. A business model of a simple invoicing system.

III. OBJECT-RELATIONAL MAPPING

The problem of mapping an object oriented domain model
to the tabular structure of a relational database was already
addressed by Keller et al. [11]. Essentially, this mapping
requires the reconciliation between two widely different
information modeling paradigms.

Heinckiens [4] provided a more advanced approach and
Fowler [3] summarised the state-of-the-art in terms of
patterns, which stand for best practices in current software
engineering.

All those approaches, however, tend to have a rather
technological and implementation oriented view. Fowler
([3], p. 37) states that 1/3 of overall application code, and
hence maintenance effort, goes into object-relational
mapping. This statement implies a serious problem, in view
of maintainability and reusability.

If we really want to map an object oriented business model

onto a relational structure, more is needed than a pure object
to relational table mapping.

Links between objects are mostly an instance of
associations between classes, which often lead to expensive
join operations between tables, through foreign keys,
operations which are not always needed.

The major problem with the more established object
oriented programming languages, such as C++ and Java, is
that they allow to express associations between entities at

 3

the structural level, but do not allow to express the semantics
of those associations, even less the behavioural aspects.

Two main issues arise when implementing object
persistency. First, every object to be persisted must have the
appropriate functionality to be stored in and retrieved from a
data source. Moreover, query functionality is needed. If this
were not the case, simple object serialisation might suffice.
Take for example a query (referring to fig.2) that must find
all Customers who have Invoices that should have been paid
last month. It is best not to have this query functionality
embedded in one of the classes, involved in the query. The
functionality results from the relationship between Customer
and Invoice as defined in a specific business domain.
Another business domain might impose the same
relationship, but implying different semantics, and thus
different query functionality. This problem could be
resolved by putting the query functionality in a dedicated
class that models the relationship between Customer and
Invoice, but even that solution has an ad-hoc flavour.

To conclude this section, it is clear that more pervasive
mechanisms are required to express persistency issues in a
way that lets the business objects and the entities they model
undisturbed, in other words to bridge the semantic gap
between the domain model and its persistent representation.

IV. EXPRESSING PERSISTENCY IN OBJECT-ORIENTED
LANGUAGES

To bridge the semantic gap that exists in describing the
persistent properties of information and to do this while
achieving optimal separation of concerns, any OO language
such as Java must be extended. Using aspect oriented
programming is one way to do this. In this paper we also
present an alternative, lightweight approach, using standard
techniques: Javadoc style tagging expressed as a formalised
declarative language, an XML description and run-time
framework interpreting it. This approach offers a lightweight,
declarative, extensible and non-intrusive mechanism to
introduce persistency in existing Java classes. Both
approaches will be described in subsequent sections (see
section V).

Some object-oriented languages, such as C++, do not offer

any support for object persistence, except through the use of
dedicated and proprietary libraries. In the remainder of this
paper we will concentrate on the use of Java.

Even in Java, support for persistency is limited. This was

explored by Matar, Vandenborre et al. [5] [6] [7]. Inheritance
may be used to introduce persistency in the business classes,
and some forms of introspection are available to explore the
attributes of classes. This does not solve however, the general
problem, in view of class associations, as it was explained in
section III. A more powerful mechanism, that is non-intrusive
in view of the business class design, is definitely needed.

V. APPROACHES TO IMPLEMENT PERSISTENCY

A. Aspect Oriented Approach

1) Overview

Aspect Oriented Software Design (AOSD) is a new software
development paradigm which allows to design and/or
implement crosscutting concerns on an object model. A
general discussion of AOSD is given by Kiczales et al. [12],
and also in [18] [21].

While AOSD is mainly a software design paradigm, its
implementations are usually based upon a base object-oriented
language, such as Java. The most prominent example is
AspectJ [19] [20] [22].

The AspectJ language offers two techniques to capture

crosscutting concerns:
• Introduction, which provides the ability to introduce

attributes, methods and constructors in existing classes
• Advice, which provides a way to insert code at certain

execution points (typically method calls).
Important to note is that both are done in a non-intrusive way,
i.e. without disrupting the original class design, nor its
implementation.

As was explained above, persistency is clearly a crosscutting
concern since it pervades a large number of the classes (but
not all off them) in the business model. The use of AOSD can
alleviate this pervasive behaviour. In AspectJ terms, the use of
introduction can introduce in existing classes the extra
features to obtain a persistent class. This is achieved by
having every class, to be made persistent, to implement the
empty interface Persistent, which results in adopting that class
the type Persistent.

In persistent classes, we have to introduce:

• A unique object identifier and methods to retrieve it.
These methods should be private, in order to restrict
external knowledge about the persistency characteristics
of the class.

• Generic methods to write, update and delete persistent
objects. These methods return a Boolean to indicate
success or failure.

• A generic method to read multiple objects, returning
typically a Vector.

The methods introduced are empty. The advice mechanism

of AspectJ is then used to have extra code executed whenever
e.g. a write() method is called on an object that implements
the interface Persistent. AspectJ provides the possibility to
know when the method is executed and from which object it
originates, allowing reacting appropriately.

 4

2) Example

As an example, take the UML diagram shown in fig.2.

Assume that the business classes have been designed without
any persistency requirements in mind and that it is now
decided to make the classes Customer and Invoice persistent.
To this effect the aspect PersistentIntroductor is introduced in
both classes. Its purpose is to introduce persistence related
attributes and methods needed in both classes. The AspectJ
code is shown below.

public aspect PersistentIntroductor
{
 declare parents : Invoice implements Persistent;
 declare parents : Customer implements Persistent;
 private Long Persistent.oID = new

Long(Math.round(Math.random() * 1000000));
 private Long Persistent.getOID()
 {return oID;}
 public Boolean Persistent.write(Persistent p)

 {return new Boolean(false);}
 public Vector Persistent.read(Long i)

 {return new Vector();}
 public Boolean Persistent.update(Long i)
 {return new Boolean(false);}
 public Boolean Persistent.delete(Long i)
 {return new Boolean(false);}
}

At this point only generic methods are introduced, that do
not execute actual persistency code. This is to be defined in
other aspects. This process is illustrated by the Pinvoice aspect
for the Invoice class. This aspect
• Is privileged to access the object identifier attribute
• Defines the pointcuts (the “interaction points”)
• Is responsible for the database connection
• Defines an after advice after the methods defined in the

pointcuts, which has access to the return value of the
original method.

The skeleton AspectJ code is shown below.

public privileged aspect PInvoice
{
 pointcut reader(Invoice p) : target(p) &&

call(public Vector read(..));
 pointcut writer(Invoice p) : target(p) &&

call(public Boolean write(..));
 pointcut updater(Invoice p) : target(p) &&

call(public Boolean update(..));
 pointcut deleter(Invoice p) : target(p) &&

call(public Boolean delete(..));
 private Connection con = null;
 private void setConnection()
 { /* Connects to database* /}
 after(Invoice p) returning (Vector v) : reader(p)
 {

/* Retrieves the argument of the method the
advice is advising on, gets a connection to
the database, builds a PreparedStatement to
read the invoice from the invoice table and
the associated customer from the customer
table, builds an Invoice Object and puts this
object in the vector v returned by the
original method being the subject of this
advice*/

 }
 after(Invoice p) returning (Boolean success) :

writer(p)

 {
/* Gets a connection to the database, builds
a PreparedStatement to write the invoice
object to the appropriate tables and returns
true on success. This return value becomes
the return value of the original method being
the subject of this advice*/

 }
 /* Analogous after advices for updater and
 deleter*/
}

3) Conclusion on the AOSD approach

All persistency issues are removed from the business

classes to separate aspects, which makes the business classes
far more suitable for reuse : they represent only design
abstractions, uncluttered by persistency issues and
independent from the type of data source being used.
Adjusting the business model only takes a review of the
aspect code and a recompilation. This implies also that the
business model can be tested before the persistency features
are introduced.

It could be argued that a technique like introduction breaks
the principle of encapsulation: New methods and attributes
are inserted in existing classes. This is done, however, in a
clean and controllable way and is only visible at the level of
the implementation of the business model, and not at the
level of the application tier built on top of it.

B. Lightweight Approach

Instead of augmenting an existing programming language
such as Java, it could be useful to explore how standard
language constructs, API’s and tools can be used to express
persistency concerns. This topic was explored by Matar et
al. [5] [7] and led to a lightweight approach for the problems
explained in previous sections. The following subsections
will summarise those findings.

1) A declarative Language

Exploring the capabilities of Java to introduce persistency,
it appears at first sight that introspection offers the ability to
obtain information about classes and objects at run-time.
Unfortunately, it allows only gathering information about
class structure and attribute values. Meta-information about
classes, which is related to persistency, cannot be extracted
from the mere class code. Therefore a declarative tagging
language was developed to identify and declare persistency
related information, the Persistency Definition Language
(PDL). It is based on Javadoc tags, and together with
introspection it provides a complete description of persistent
classes. It should be noted, however, that an extra
requirement is that all persistent classes inherit from a
predefined base class, Pobject, which defines some
functionality required to have persistency function in the
context of the framework discussed below. This consumes

 5

the single inheritance relationship available in Java and
might be a hindrance to class design. Ways to overcome that
problem are discussed in [5].

The combination of the techniques mentioned above

makes it possible to store and retrieve objects defined in
Java to and from a relational database. Except for the
required inheritance from a single base class Pobject, the
original Java code of the business classes remains
unmodified from a non-persistent to a persistent version of
the class.

As mentioned before, PDL is a Javadoc tag based

declarative language. The tags, which are needed, were
identified by looking for persistency aspects not covered by
standard Java features. The tags introduced can be classified
as follows:

• Versioning tags, defining class versions. They are
@major and @minor, to identify major and minor
versions of a class, respectively. A versioning system
is inherent to PDL and the encompassing persistency
framework.

• Mapping tags, which help with the mapping between
classes and their attributes to/from database tables.
They help to span the object-relational mapping gap.
They are @persistent (to tag attributes that are to be
mapped to the database), @database and @table to
identify the database and table, respectively, to be
mapped to.

• Retrieval tags used in queries. There is one tag in this
category, @accessor. It identifies attributes which can
be used to access objects in the database.

• Internal state tags : @state (to tag attributes which are
essential to define the state of the object), @size (to
specify the size of a string-like attribute, especially of
attributes of class ByteField, which can be mapped
directly to columns in a database), @contained (to tag
attributes which have a composition relationship with
the containing class, rather than a being a reference
which is by default the case in Java), @compType (to
identify a Java homogeneous collection component.
They define the internal state of objects as far as this
is relevant for its persistent characteristics

• Table design tags, helping in designing relational table
columns : @unique and @index, which assist in
defining the database index structure.

A simple example of the use of PDL tags is shown below.

package MyApplication;
 /**
 * @database "Company"
 * @table "Employee"
 * @major 01
 * @minor 00
 */
public class Employee extends Pobject {
 public static ClassVersion classVersion

= new ClassVersion("01","00");
 /**
 * @persistent
 * @accessor
 * @index
 * @unique
 */
 private Name empName;

 /**
 * @persistent
 * @contained
 */
 private Address address;

 /**
 * @persistent
 * @accessor
 * @index
 * @size 10
 */
 private ByteField jobTitle;

 //constructor
 public Employee(){
 }

//other constructors and methods go here

2) Generation of an XML description of persistent
classes

The Java source code is parsed to extract the PDL tags

and, by using a Java doclet, to produce an XML file to
represent the persistent behaviour of the classes. This XML
description will be used by the run-time framework
discussed below. This PDL processor helps to generate SQL
code that is used by the framework for purposes such as
creating database tables, storing and retrieving objects
to/from those tables, …

The XML description extracted from the code sniplet

given in the previous subsection is shown below.

<?xml version='1.0'?>
<!DOCTYPE ClassLibrary >
 <classDescriptor Class="MyApplication.Employee">

 <classVersion major="01" minor="00">
 </classVersion>

 <db database="Company " table="Employee">
 </db>

 <pAttribute accessor="true" index="true"

unique="true" contained="false">
 <attributeOfClass>
 MyApplication.Employee
 </attributeOfClass>
 <attributeName>
 empName
 </attributeName>
 </pAttribute>

 <pAttribute accessor="false" index="false"

unique="false" contained="true">
 <attributeOfClass>
 MyApplication.Employee
 </attributeOfClass>
 <attributeName>
 address
 </attributeName>
 </pAttribute>

 6

 <pAttribute accessor="true" index="true"

unique="false" contained="false">
 <attributeOfClass>
 MyApplication.Employee
 </attributeOfClass>
 <attributeName>
 jobTitle
 </attributeName>
 <size size="10">
 </size>
 </pAttribute>

</classDescriptor>

The XML description is one of the two stages any

persistent class needs to go through, in order to be able to be
registered with the framework discussed in the next
subsection.

3) Run-time persistency framework

The persistency definition language framework (PDLF) is

an object-relational mapping that enables developers to
easily persist Java objects to relational databases. Classes
that have to be persisted must be registered with the
framework. This implies that both the byte code (the .class
file) and the XML file generated, as mentioned in the
previous subsection, must be provided. Once registered,
with the framework, instances of the class can use the
methods available in it to perform persistency related
operations. The versions of the class and their XML
descriptor must be identical, however, or a run-time
exception will be raised by the framework. It is the
responsibility of a “database administrator to register a class
to be persisted with the framework. This technique supports
a clear separation of concerns.

4) Conclusion on the lightweight approach

The main features of the lightweight approach to

persistency are :
• A purely declarative framework based on standard Java

and PDL
• A total separation of concerns is implemented.
• It helps developers to concentrate on business logic,

without having to be concerned with persistency issues.
• The meta-data mappings separate the details of the

storage mechanisms from the business logic. Database
schemes are automatically generated.

• The mapping strategy is saved to a central repository that
is used by the persistence layer at run-time. The
persistence layer provides an API to allow business
objects to be persisted and queried.

• Developers do not have to write SQL statements to read
and write Java objects; SQL is generated automatically.

The main point, however, is that it has been proven to be
possible to express persistency using standard Java
techniques and related tools.

C. Comparison of the AOSD and the lightweight approach

Both approaches (those of sections V.A and V.B) have
been proven to be valuable and feasible. While the AOSD
approach requires the extension of existing programming
languages, implying a steeper learning curve, the lightweight
approach exposes the limitations of those same languages.
Especially the requirement to inherit from a common
persistent base class imposes severe limitations to the design
of business classes.

A major conclusion might be that the lightweight approach

offers an interesting stepping stone to tackle the major
problem of persistency issues from domain modelling, but
that the AOSD approach offers a more durable solution,
especially since these techniques are rapidly becoming
mainstream in software development.

VI. RELATED WORK
The application of the principles of AOSD to persistency

was also discussed recently by Rashid et al. [14] and Soares
et al. [15]. They come to similar solutions and/or
conclusions as discussed in section V.A.

The importance of persistency issues in legacy migration

was already stressed at the end of section II. Other authors
have dealt with the subject before, such as Henrard et al. [9],
Plakosh et al. [10] . Best practices in reengineering of
object-oriented systems are described extensively by
Ducasse et al. [13].

The examples in this paper are based on Java as a base

language. Similar efforts have been reported, based on Ada
by Crawley et al. [17], as well as on C++ and Modula-3 by
Hosking et al. [16].

VII. FUTURE WORK

Currently, work is going on to merge the two approaches
mentioned in section V (A and B). The simplicity of the
declarative technique described in section V.B will be
conserved, and the aspect code will be generated
automatically from it. Whether this is best done directly
from the Javadoc tagging or from the intermediate XML
description has still to examined.

Persistency is also not the only service to worry about.

Transaction management and security are also services,
which could be expressed as aspects. The relationship with
the services offered in the context of a J2EE container needs
further investigation. This is also the case for the co-
operation between (unrelated) aspects.

 7

REFERENCES
[1] H. Tromp, G. Hoffman, “Evolution of legacy systems: strategic and

technological issues, based on a case study”. International Workshop on
Evolution of Large-scale Industrial Software Applications (ELISA),
Amsterdam, Sep. 2003.

[2] I. Michiels, D. Deridder, H. Tromp, A. Zaidman, “Identifying ICT
problems in legacy software: preliminary findings of the ARRIBA
project”. International Workshop on Evolution of Large-scale Industrial
Software Applications (ELISA), Amsterdam, Sep. 2003.

[3] M. Fowler, Patterns of Enterprise Application Integration. Addison-
Wesley Signature Series, 2002.

[4] P. M. Heinckiens, Building Scalable Database Applications. Addison-
Wesley Object Technology Series, 1998.

[5] M. Matar, A methodology for object persistence in Java based on a
declarative strategy. PhD thesis, Ghent University, Department of
Information Technology, 2001.

[6] K. Vandenborre, M. Matar, G. Hoffman, “Orthogonal persistence using
aspect oriented programming”, in Workshop on Aspects, Component,
and Patterns for Infrastructure Software, Enschede, NL, Apr. 2002

[7] M. Matar, K. Vandenborre, G. Hoffman, H. Tromp, “A declarative
persistency definition language”, in ASE 2002 Workshop on Declarative
Meta Programming to support software development. Edinburgh, UK,
Sep. 2002.

[8] K. Vandenborre, P. Heinckiens, G. Hoffman, H. Tromp, “Coherent
Enterprise Modelling in Practice”. 13th European-Japanese Conference
in Information Modelling and Knowledge Bases, Kitakyushu, Japan,
June 2003.

[9] J. Henrard, J-M. Hick, P. Thiran, J-L. Hainaut, “Strategies for data
reengineering”. Working Conference on Reengineering, IEEE Computer
Society Press, pp. 211-220.

[10] D. Plakosh, S. Commela-Dorda, G.A. Lewis, P.R.H. Place, R.C.
Seacord, Maintaining transactional context: a model problem. Report
CMU/SEI-2001-TR-012, Carnegie Mellon Software Engineering
Institute, Aug. 2001

[11] A. Keller, R. Jensen, S. Agarwal, “Persistence software: bridging object-
oriented programming and relational databases”. ACM SIGMOD
Record, May 1993. Proc. 1993 ACM SIGMOD Int. Conf. On
Management of Data, Volume 22 issue 2, pp. 523-528, June 1993.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, J. Irwin, “Aspect-Oriented Programming”. Proc. of the
European Conference on Object-Oriented Programming, June 1997.

[13] S. Ducasse, S. Demeyer, O. Nierstrasz, Object-Oriented Reengineering
Patterns, Morgan Kaufmann and Dpunkt, 2002.

[14] A. Rashid, R. Chitchyan, “Persistence as an aspect”, Proc. 2nd Int. Conf.
on Aspect-oriented Software Development, Boston, MA, 2003, ACM
Press, pp. 120-129.

[15] S. Soares, E. Laureano, P. Borba, “Implementing distribution and
persistence aspects with AspectJ”, Proc. 17th ACM Conf. on Object-
oriented programming Systems, Languages and Applications, Seattle,
2002, pp. 174 - 190, also in ACM SIGPLAN Notices, Vol. 37, No. 11
(November 2002)

[16] A. L. Hosking, J. Chen, “Mostly-copying reachability-based orthogonal
persistence”, Proc. 1999 ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages and Applications, Denver, 1999, pp.
382 - 398

[17] S. Crawley, M. Oudshoorn, “Orthogonal Persistence in Ada”, Proc.
Conf. on TRI-ADA ’94, Baltimore, 1994, pp. 298 – 308

[18] T. Elrad, R. Filman, A. Bader (eds.), “Theme section on Aspect-Oriented
Programming”, CACM, 44(10), 2001

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. A. Kersten, J. Palm, W. G.
Griswold, “An Overview of AspectJ”, ECOOP, 2001, Springer-Verlag,
LNCS 2072, pp. 327 – 353.

[20] I. Kiselev, Aspect-Oriented Programming with AspectJ, SAMS, 2002
[21] K. Mens, C. Lopes, B. Tekinerdogan, G. Kiczales, “Aspect-Oriented

Programming Workshop Report”, ECOOP Workshop Reader, 1997,
Springer-Verlag, LNCS 1357.

[22] J. D. Gradecki, N. Lesiecki, Mastering AspectJ, Wiley, Indianapolis,
2003.

Ghislain Hoffman holds the degrees of civil engineering and doctor in
applied sciences from the University of Gent in Belgium. He is full professor,

affiliated to the Department of Information Technology in the Faculty of
Applied Sciences of the University of Gent, where he is teaching and
researching software engineering.

His primary concern is the application of the principles of object
orientation in analysis and design of large administrative systems, including
client/server systems and network and mobile computing, where strategic
decisions are an absolute necessity. Business modeling, ICT architecture,
legacy recovery, enterprise application integration and reuse of software
components have been his primary academic research topics. His current focus
is on Aspect Oriented Software Design. He is consulting on ICT strategy for
several public administrations and industrial corporations (the Belgian Senate
is one of the examples in the public sector). Recent projects involve advanced
network technology in the fields of e-commerce en messaging, and major
projects in migrating legacy environments to distributed environments.

Prof. Hoffman is a member of the scientific advisory board of
Inno.com and of its strategic committee.

Muna Matar holds a PhD degree in Information Technology from the
Department of Information Technology at Ghent University, Belgium,
obtained in November 2001. Currently she is working at the Institute for
Continuing Education (IVPV) at Ghent University after which, in September
2003, she will be joining the Faculty of Science at Bethlehem University in
the Palestinian Territories. In 1985 she obtained a M.Sc. degree in Software
Engineering from Oregon State University, Oregon, USA, after which she
started working at Bethlehem University.

Dr. Matar’s interests are in the areas of object orientation, analysis,
storage frameworks and persistency. For the past year and a half Dr. Matar
was working on setting up an e-learning platform.

Herman Tromp was born in Antwerp, Belgium, in 1949. He holds an
Electrical Engineering degree (1972), a degree in Telecommunications
Engineering (1973) and a Ph.D. in Engineering (1978), all from Ghent
University, Belgium. Since 1972 he is with the Department of Information
Technology, Ghent University, Belgium, on leave with McMaster University,
Canada in 1974-1975 and the Belgian Military Academy (Telecom
Department) in 1975-1976. In 1998-2002 he also was an independent senior
IT-consultant on software architecture and EAI (Enterprise Application
Integration).

The main interests of Prof. Tromp are currently in research on
architectural resources for the revitalization and integration of legacy IT
systems, and on software development methodology in general

Koenraad Vandenborre holds an Electrical Engineering degree (1992)
obtained at Ghent University. From 1998 until 2001 he was affiliated with the
Department of Information Technology, Ghent University, Belgium as a Ph.D.
student. In 2001 he became an IT-consultant within Inno.com, a Belgian
consulting firm delivering IT architecture and IT strategy services.

His main interests are in software development methodologies with
a current focus on researching the applicability of the Aspect Oriented
Paradigm in large-scale organizations.

