
Cloud–Computing: from Revolution to Evolution

Sébastien Mosser?, Eirik Brandtzæg?,†, Parastoo Mohagheghi?

? SINTEF IKT
† University of Oslo

{firstname.lastname}@sintef.no

Extended Abstract, submitted to BENEVOL’11

Introduction. Cloud–Computing [1] was considered as a revolution. Taking
its root in distributed systems design, this paradigm advocates the share of
distributed computing resources designated as “the cloud”. The main advan-
tage of using a cloud-based infrastructure is the associated scalability property
(called elasticity). Since a cloud works on a pay–as–you–go basis, companies
can rent computing resources in an elastic way. A typical example is to tempo-
rary increase the server–side capacity of an e–commerce website to avoid service
breakdowns during a load peak (e.g., Christmas period). However, there is still
a huge gap between the commercial point of view and the technical reality that
one has to face in front of “the cloud”. As any emerging paradigm, and despite
all its intrinsic advantages, Cloud–Computing still relies on fuzzy definitions1

and lots of buzzwords (e.g., the overused “IaaS”, “PaaS” and “SaaS” acronyms
that does not come with accepted definitions).

Problem Statement. A company that wants to migrate its own systems
to the cloud (i.e., be part of the cloud revolution) has to cope with existing
standards. They focus on cloud modeling, but does not provide any support
for software evolution. Thus, the evolution of a legacy system into a cloud–
based system is a difficult task. On the one hand, an immediate issue is the
paradigm shift (e.g., migrating a centralized cobol system to a service–oriented
architecture deployed in the cloud). This issue is not directly related to Cloud–
Computing, and considered as out of the scope of this work (e.g, see the smart
method [2]). On the other hand, the Cloud–Computing paradigm introduces
several key concepts that must be used during the evolution process to accu-
rately promote a given legacy system into a cloud–based one. For example,
deploying an application to the cloud does not automatically transform it into
a scalable entity: the evolution process must carefully identify the components
that can be replicated to ensure elasticity using resources available in the cloud.
Consequently, the evolution of a legacy system into a cloud–based system re-
quires a dedicated entity that support (i) reasoning mechanisms dedicated to

1The Cloud–Standard initiative (http://cloud-standards.org/) lists dozens of overlap-
ping standards related to Cloud–Computing. They focus on infrastructure modeling or busi-
ness modeling.

1



cloud concepts and (ii) technical implementation of cloud deployment for such
systems.

Objectives. Instead of designing yet another cloud standard, our goal (part
of the remics project [3]) is to define a language that supports evolution to the
cloud. The objectives of this language are the following:

• Platform–independence. It is an abstract modeling language to support
the description of the software that will be deployed on the cloud. This ar-
chitecture description language includes cloud–specific concepts (e.g., elas-
tic capability, deployment geographic zone, failure recovery, parallelism,
data protection). The language acts as an intermediary pivot between
legacy applications and the cloud. Thus, the evolution process does not
target concrete cloud providers entities anymore. Moreover, it is possible
to reason on the modeled element using a cloud–based vocabulary.

• Transparent projection. Based on the modeled entities, the framework as-
sociated to the language handle the projection of the abstract description
into concrete cloud entities. A matching step is used to accurately bind
the abstract resource described in the language with available resources
published by cloud providers. For example, at the infrastructure level, it
identifies which virtual images must be deployed on what cloud resources.

• Automated deployment. The language comes with an interpreter that im-
plements the actual deployment. It abstracts the underlying platform
complexity and programming interfaces. Thus, assuming that the evo-
lution process targets the modeling language previously described, the
application can be deployed on existing clouds in an automatic way.

Perspectives: Cloud Evolution. The definition of this language and its
associated engine is a first step. Based on this experience, we will consider evo-
lution in cloud context according to two complementary axis: (i) the evolution
of the application after its initial deployment and (ii) the evolution of the cloud
infrastructure itself.

Acknowledgments. This work is funded by the EU Commission through the
remics project (http://remics.eu), contract number 257793 (FP7).

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[2] G. Lewis, E. Morris, D. Smith, and L. O’Brien. Service-Oriented Migration and
Reuse Technique (SMART). In Proceedings of the 13th IEEE International Work-
shop on Software Technology and Engineering Practice, pages 222–229, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[3] P. Mohagheghi and T. Sæther. Software Engineering Challenges for Migration to
the Service Cloud Paradigm: Ongoing Work in the REMICS Project. In SER-
VICES, pages 507–514. IEEE Computer Society, 2011.

2


