
Refactoring In Scheme Using Static Analysis

Jens Nicolay

Scheme is a small but elegant and powerful programming language with clean syn-
tax. It allows for both imperative and functional programming and is able to express sev-
eral different programming paradigms. As a consequence, Scheme has influenced the
design of many other more widely-used and industrially-relevant languages, while also
making the language especially suited for experimentation. Even with all this power,
expressivity and influence, no refactoring catalog or well-known refactoring tools exist
for Scheme. There are a couple of reasons why this is might be the case. Firstly, most
refactorings are based on static analysis of code, and static analysis is far from trivial to
perform in dynamic languages such as Scheme. Also, Scheme isn’t widely used outside
of academia, although this does not change the fact that it is very well suited as a re-
search language, especially in the context of the growing interest in dynamic languages
that we see today. We argue that refactoring in Scheme should enjoy the same status as
the language itself: it should deepen our general understanding of techniques for, and
implementations of, program analysis and transformation, with influences far beyond
the Scheme language. Our aim is twofold. First of all we want to compile a refactoring
catalog for Scheme, containing the exact specifications of general refactorings like RE-
NAME, ADD PARAMETER, and so on, expressed as program transformations guarded by
pre- and postconditions. We also want to discover refactorings that are not readily iden-
tified as general refactorings and see how these might carry over into other languages.
Our second goal is to design a specification language that allows us to express Scheme
refactorings. For this specification language we again choose Scheme, but with built-in
backtracking for convenience and with a library of primitives that allow reasoning over
Scheme programs. This reasoning is based on the results of a sufficiently precise, pow-
erful and fast static analysis, on which several layers of primitives are layered so that
the right level of abstraction can be selected by the designer of refactorings. Th analysis
approximates value flow, control flow and interprocedural dependencies. Note that our
two aims go hand in hand. In order to write down refactoring specifications we need a
language. At the same time this specification language will determine what the refac-
toring specifications will look like. To validate our work, we select existing refactoring
scenarios and see how our approach deals with them, assessing strengths and investi-
gating weaknesses. In order to facilitate experimentation and as a way to make our
work publicly available, we have also build an Eclipse plugin aimed at programming

1



in Scheme and containing several refactorings. The provided Scheme editor also detect
certain patterns in the source code in order to provide feedback during development. The
plugin also allows a developer to perform program analysis and transformation using a
meta-programming approach, which is useful for prototyping refactorings.

2


