
An Approach for Refactoring Planning

Javier Pérez1,2, Yania Crespo2

1 University of Mons; Software Engineering Lab
2 University of Valladolid; Department of Computer Science

javipeg@gmail.com, yania@infor.uva.es

Refactorings are source code transformations that change the system’s inter-
nal design while preserving its observable behaviour [?]. Refactorings can be used
to improve, in general, certain quality factors such as reusability, understand-
ability, maintainability, etc. More specifically, refactorings can help to achieve a
particular system structure or consolidating the system’s architecture [?].

Refactoring operations are meant to be executed in small steps, so that more
complex refactorings can be executed by the composition of simpler ones. Be-
haviour preservation is also easier to check in the case of simpler refactorings.
When a refactoring process aims to solve a complex problem, such as the correc-
tion of design smells [?], a significant amount of changes is needed. Refactorings’
preconditions can help to assure behaviour preservation, but at the same time
they hinder the application of complex transformation sequences because they
restrict the applicability of refactoring operations. If any precondition of any
operation in the intended transformation sequence, is not fulfilled at the time of
its application, the whole sequence can not be applied. This makes it hard for
the developer to perform complex refactoring processes.

We have developed a technique that uses Hierarchical Task Network (HTN)
Planning [?] to tackle this problem [?]. The proposal is based at the definition of
refactoring strategies and refactoring plans. A Refactoring Strategy is a heuristic-
based, automation-suitable specification of a complex behaviour-preserving soft-
ware transformation which is aimed at a certain goal. It can be instantiated, for
each particular case, into a Refactoring Plan. A Refactoring Plan is a sequence
of instantiated transformations, aimed at achieving a certain goal, that can be
effectively applied over a software system in its current state, while preserving
its observable behaviour. It can be an instance of a Refactoring Strategy.

To develop this proposal we have focused in how refactorings are used for de-
sign smell correction. We have first analysed the current correction specifications
from different authors, identified the main characteristics of these specifications
and unified them in a single model. We have then identified the current prob-
lems and the requirements that correction specifications have to meet in order to
be automation-suitable. We have defined a model for refactoring strategies that
fulfills these requirements and defined a language in order to ease writing these
specifications. We have identified the requirements an underlying approach has
to meet to support the computations of refactoring plans from refactoring strate-
gies and we have selected HTN automated planning for this purpose. We have
implemented this proposal as a reference prototype and it has been evaluated
by performing two case studies over a set of open-source systems.



The assembled prototype is composed of a small HTN domain, which is our
main contribution to this prototype, and some third-party tools. The refactor-
ing planning domain we have written, addresses Feature Envy and Data Class
design smells and comprises the specifications of a set of refactorings, refac-
toring strategies, other transformations and system queries, all of which have
been represented as task networks. Regarding the other tools, we have used
JTransformer, a program transformation tool based in Prolog, to obtain
the predicate-based representation of Java systems. We have also used iPlasma,
a design smell detection tool, to obtain reports of the two design smells we have
addressed. The logic-based representation of a Java program, and the informa-
tion about which entities are affected of which smells constitute the initial state
of the system for the planner. A set of scripts compiles the refactoring planning
domain and all these inputs as a refactoring planning problem for JSHOP2,
the planner we had selected. The planner searches refactoring sequences, for
applying the requested strategies and produces refactoring plans.

To conclude, two case studies have been carried out to evaluate our approach,
and to test the reference prototype in terms of effectiveness, efficiency and scal-
ability. The case studies used are addressed for removing the Feature Envy and
Data Class design smells and have been performed over 9 software systems of dif-
ferent sizes ranging from small to medium size. The results of the study confirm
that our approach can be used to automatically generate refactoring plans for
complex refactoring processes in a reasonable time. The studies performed also
demonstrate that the efficiency of the HTN family of planners and the expres-
siveness of the JSHOP2 domain specification language makes it the appropriate
planner to support the refactoring planning problem.

Aknowledgements

This work has been partially funded by the spanish government (Ministerio de
Ciencia e Innovación, project TIN2008-05675).

References

1. Kent Beck and Martin Fowler. Bad Smells in Code, chapter 3. Refactoring: Im-
proving the Design of Existing Code. Addison-Wesley, 1 edition, June 1999.

2. Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan
Wu, and Fusun Yaman. SHOP2: An HTN Planning System. Journal of Artificial
Intelligence Research (JAIR), 20:379–404, 2003.

3. Colin J. Neill and Phillip A. Laplante. Paying down design debt with strategic
refactoring. IEEE Computer, 39(12):131–134, 2006.

4. W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 1992. also Technical
Report UIUCDCS-R-92-1759.

5. Javier Pérez. Refactoring Planning for Design Smell Correction in Object-Oriented
Software. PhD thesis, University of Valladolid, 2011.


