
Presentation Abstract: Generating Class Integration
Tests Using Call Site Information

Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman and Arie van Deursen
Delft University of Technology, Delft, The Netherlands. Emails: p.derakhshanfar@tudelft.nl,

x.d.m.devroey@tudelft.nl, a.panichella@tudelft.nl, a.e.zaidman@tudelft.nl and arie.vandeursen@tudelft.nl

Search-based approaches have been applied to a variety of
white-box testing activities [1], among which test case and
data generation [2]. In white-box testing, most of the existing
work has focused on the unit level, where the goal is to
generate test cases/suites that achieve high structural (e.g.,
branch) coverage. Prior work has shown that search-based
unit test generation can achieve high code coverage [3]–[5],
detect real-bugs [6], [7], and help developers during debugging
activities [8].

Despite these undeniable advantages, in recent years, re-
searchers have investigated the imitations of the generated unit
tests [7], [9], [10]. Prior studies have questioned the effective-
ness of the generated unit tests with high code coverage in
terms of their capability to detect real faults or to kill mutants
when using mutation coverage. For example, Gay et al. [9]
have highlighted how traditional code coverage could be a
poor indicator of test effectiveness (in terms of fault detection
rate and mutation score). In particular, traditional unit-level
adequacy criteria measure only whether certain code elements
are reached, but not how each element is covered. The quality
of the test data and the paths from the covered element to the
assertion play an essential role for better test effectiveness. As
such, they have advocated the need for more reliable adequacy
criteria for test case generation tools.

In this presentation, we discuss how the integration code
between coupled classes can be used as guidance for the test
generation process. The idea is that, by exercising the behavior
of a class under test E (the calleE) through another class R
(the calleR) calling its methods, R will handle the creation of
complex parameter values and exercise valid usages of E. In
order words, the caller R might contain integration code that
(1) enables to create better test data for the callee E, and (2)
allows to better validate the data returned by E.

Integration testing can be approached from many different
angles [11], [12]. In our case, we focus on class integration
testing between a caller and a callee [13]. Our idea is to com-
plement unit test generation for a class under test by looking
at its integration with other classes. To that end, we define a
novel structural adequacy criterion we call Coupled Branches
Coverage (CBC), targeting specific integration points between
two classes. Coupled branches are pairs of branches 〈r, e〉,
with r a branch of the caller, and e a branch of the callee, such

This research was partially funded by the EU Project STAMP ICT-16-10
No.731529.

that an integration test that exercises branch r also exercises
branch e. Furthermore, we devise a search-based approach
that generates integration-level test suites, based on the CBC
criterion. We coin our approach CLING (for class integration
testing).

According to our preliminary results, on average, CLING
allows killing 10% of mutants per class that cannot be detected
by unit tests generated with EVOSUITE for both the caller and
the callee. The improvements in mutation score are even up
to 60% for certain classes.

REFERENCES

[1] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering,” ACM Computing Surveys, vol. 45, no. 1, pp. 1–61, nov
2012.

[2] P. McMinn, “Search-based software test data generation: A survey,”
STVR, vol. 14, no. 2, pp. 105–156, 2004.

[3] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in a Financial Application,” in ICSE-SEIP ’17. IEEE, may 2017, pp.
263–272.

[4] J. Campos, Y. Ge, G. Fraser, M. Eler, and A. Arcuri, “An empirical
evaluation of evolutionary algorithms for test suite generation,” in SSBSE
’17, ser. LNCS, T. Menzies and J. Petke, Eds., vol. 10452. Springer,
2017, pp. 33–48.

[5] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empirical
comparison of state-of-the-art search-based test case generators,” IST,
vol. 104, no. June, pp. 236–256, 2018.

[6] G. Fraser and A. Arcuri, “1600 faults in 100 projects: automatically
finding faults while achieving high coverage with evosuite,” EMSE,
vol. 20, no. 3, pp. 611–639, 2015.

[7] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? An empirical
study of effectiveness and challenges,” ASE ’15, pp. 201–211, 2016.

[8] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella,
“Do automatically generated test cases make debugging easier? an
experimental assessment of debugging effectiveness and efficiency,”
TOSEM, vol. 25, no. 1, pp. 5:1–5:38, Dec. 2015.

[9] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “The risks of
coverage-directed test case generation,” TSE, vol. 41, no. 8, pp. 803–
819, 2015.

[10] A. Schwartz, D. Puckett, Y. Meng, and G. Gay, “Investigating faults
missed by test suites achieving high code coverage,” JSS, vol. 144, pp.
106–120, 2018.

[11] Z. Jin and A. J. Offutt, “Coupling-based criteria for integration testing,”
STVR, vol. 8, no. 3, pp. 133–154, sep 1998.

[12] A. Offutt, A. Abdurazik, and R. Alexander, “An analysis tool for
coupling-based integration testing,” in ICECCS ’00. IEEE, 2000, pp.
172–178.

[13] A. Scott, “Building object applications that work, your step-by-step
handbook for developing robust systems using object technology,” 1997.


