
Inter-Procedural Graph-Based API Misuse Detection
Ruben Opdebeeck, Camilo Velázquez-Rodrı́guez

Software Languages Lab, Vrije Universiteit Brussel, Belgium
{ropdebee,cavelazq}@vub.be

I. EXTENDED ABSTRACT

The vast majority of programs written today use function-
ality provided by one or more libraries, and thus integrate
with numerous Application Programming Interfaces (APIs).
However, programming with these APIs can be difficult due
to extensive APIs, implicit usage contracts, and missing or
outdated documentation. Misusing such APIs may lead to
severe bugs such as program crashes, data loss, or security
vulnerabilities.

To alleviate the difficulties in using APIs, a lot of effort
has gone into the research of API misuse detectors. Many of
these detectors use the wisdom of the crowd to flag likely API
misuses. Such tools first mine patterns in library usage across
a corpus of programs, and then perform pattern matching in
order to find imperfect instances, or violations, of the pattern.
Due to space considerations, we refer to the main author’s
thesis dissertation [1] for a literature study of the field.

Amann et. al. [2] recently performed a systematic study
of existing API misuse detectors and found a large number
of common shortcomings. Using insights from this study,
they developed MUDETECT and its accompanying API Us-
age Graph (AUG) representation [3]. MUDETECT improves
upon the results of previous research by a factor of 2 in
precision and recall. However, MUDETECT’s pattern mining
and pattern matching are completely intra-procedural, which
is a significant root cause for both false positives and false
negatives. For example, in the presence of helper methods,
intra-procedural pattern mining can only infer partial patterns,
and intra-procedural pattern matching reports missing program
elements which are present in the helper method’s body.

We propose a tool that builds upon the work of Amann
et. al. by incorporating function inlining into the construction
of API usage graphs. This is made difficult due to the extent
of information captured in API usage graphs, such as control
and data flow. Pattern mining is performed using an apriori
frequent subgraph mining algorithm, whereas pattern matching
is done using exploratory growth of common subgraphs.
However, the subgraph isomorphism problem is NP-complete,
and thus our approach suffers from combinatorial explosion.
In order to limit the size of the mined graphs, we devise four
different inlining parameters: The maximum depth of inlining,
whether or not recursive calls should be eliminated, whether
or not duplicate calls should be eliminated, and whether or
not calls to methods that contain no direct usage of a targeted
API should be inlined.

In pattern matching, our approach introduces an additional

inter-procedural filtering step. This step is intended to remove
common false positives, such as partial patterns which are
further instantiated by helper methods, and duplicate violation
reports due to pattern elements that are missing at function
boundaries. Mitigating the latter case is done by blaming either
the caller or callee in the violation, based on the fraction of
callers that contain the same misuse. Intuitively, if the callee
would be missing an element, all of its callers would too, since
the callee is inlined into the callers.

We evaluated our work using the MUBENCH [4] mis-
use benchmark by running experiments on nine open-source
projects for different combinations of the inlining parameters,
and one instance of our approach without inlining enabled as
a baseline. In these experiments, we limit the pattern mining
to the target project. We find that the inter-procedural filter
succeeds at removing false positives related to inter-procedural
pattern instances, leading to an increase in precision over the
baseline. However, this is offset by a minor loss in both recall
and precision compared to MUDETECT, because the resulting
graphs cannot represent first-party method calls after inlining.
Inlining also comes at a much higher execution time, since the
constructed graphs are larger in size, which mainly affects the
pattern matching phase. Finally, we find that more elimination
through different parameters leads to diminishing results, as
expected, but leads to an immense decrease in running times.

It is our immediate future work to extend this evaluation
to the full MUBENCH dataset, as well as perform pattern
mining in a cross-project setting. We expect the latter to
produce a higher precision and recall because cross-project
mining cannot mine patterns of first-party APIs, yet exhibits
promising results in MUDETECT’s evaluation. Further future
work includes the adoption of a richer representation that
allows capturing first-party patterns and focuses more on the
behaviour of a program, as well as performance improvements
through clustering and slicing and more efficient graph pattern
matching, as opposed to excessive elimination of inlining
which hinders the ability to mine accurate patterns.

REFERENCES

[1] R. Opdebeeck, “Exploring Static Inter-Procedural API Misuse Detection
Using Graph Inlining,” Master’s thesis, Vrije Universiteit Brussel, Brus-
sels, Belgium, 2019.

[2] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A
Systematic Evaluation of API-Misuse Detectors,” IEEE Transactions on
Software Engineering, 2018.

[3] ——, “Investigating Next-Steps in Static API-Misuse Detection,” in Proc.
MSR ’19. IEEE, 2019, pp. 265–275.

[4] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: a Benchmark for API-Misuse Detectors,” in Proc. MSR ’16.
ACM, 2016, pp. 464–467.

1


