
Quantifying Exogenous Software Forks
Antoine Pietri

Inria
Paris, France

antoine.pietri@inria.fr

Guillaume Rousseau
University Paris Diderot and Inria

Paris, France
guillaume.rousseau@univ-paris-diderot.fr

Stefano Zacchiroli
University Paris Diderot and Inria

Paris, France
zack@irif.fr

Abstract—A key research direction of software health and
evolution is the study of software forks: projects which started
off with an identical code base and development history, but
whose development forked to end up being developed at different
places, sometimes by different developer communities. Studying
software forks not only allows researchers to get a more precise
vision of where software projects are actively maintained, but
also has important applications in software health: forks exhibit
patterns of activity that can be used to determine common criteria
for healthy software projects, by comparing successful forks to
their inactive counterparts, as well as robust metrics independent
of the distributed version control system (DVCS) used by the
development team.

Historically, studies of forks have mostly been using the
metadata given by code hosting providers, most notably GitHub,
as the source of truth for what a fork is. GitHub provides a public
graph of forks that links forked repositories to their ”parent”
repositories. Relationships in this directed ancestry graph are
created when, and only when, people press the ”fork” button
on GitHub. Alternatively, studies focusing on the tracking of
source code artifact provenance use definitions based on intrinsic
properties such as the ”most fit fork”, seeking to capture the
main development lines. In this presentation, we expose flaws in
trusting this information and argue that it can lead to selection
biases when studying forks.

To fix that issue, we introduce the notion of exogenous forks,
software projects that have some shared development history, as
captured by the DVCS, but for which no forge-level metadata
exist to identify them. To cover all possible cases of software
forks, we have to generalize the notion of ”fork” to a symmetric
definition, where repositories are forks of each other without
directionality. We detail different hypothetical cases where this
approach should capture the reality of software evolution in a
more precise way.

Through preliminary experiments on the Software Her-
itage graph dataset, we try to quantify the prevalence of these
forks, in order to estimate the potential selection bias introduced
when ignoring them. We observe that the main step for finding
all the clusters of forks that share common development history
is to search for all the connected components on the undirected
subgraph of origins, snapshots, releases and revisions.

After running this experiment on the full graph dataset,
we showcase the frequency distribution of the sizes of the
connected components, and compare it with the GitHub fork
graph extracted from the GHTorrent project. We attempt to
explain the extremely disparate results between the two potential
ground truths, as well as provide tools to investigate these
differences.

We also discuss the caveat of this approach regarding the loss
of directionality in the graph. We present potential workarounds
to restore ancestry information in the general case: heuristics
based on forge metadata, repository creation date, as well as
the potential for partial ordering, and discuss research use cases
where it may be applicable.

A potential for future exploitation of this work is to try to
replicate previous experiments that used GitHub forks as their
ground truth on the generalized definition, and see if the results
change meaningfully.

Index Terms—software evolution, software health, software
forks, source code, open source software, free software

REFERENCES

[1] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli.
Building the universal archive of source code. Communications of the
ACM, 61(10):29–31, October 2018.

[2] Roberto Di Cosmo and Stefano Zacchiroli. Software Heritage: Why and
how to preserve software source code. In iPRES 2017: 14th International
Conference on Digital Preservation, 2017.

[3] MM Mahbubul Syeed, Imed Hammouda, and Tarja Systa. Evolution of
open source software projects: A systematic literature review. Journal
of Software, 8(11):2815–2830, 2013.

[4] Hongyu Pei Breivold, Muhammad Aufeef Chauhan, and Muhammad Ali
Babar. A systematic review of studies of open source software evolution.
In Software Engineering Conference (APSEC), 2010 17th Asia Pacific,
pages 356–365. IEEE, 2010.

[5] Ralph C. Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology - CRYPTO ’87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings, pages 369–
378, 1987.

[6] Jesus M Gonzalez-Barahona, Gregorio Robles, Martin Michlmayr,
Juan José Amor, and Daniel M German. Macro-level software evolution:
a case study of a large software compilation. Empirical Software
Engineering, 14(3):262–285, 2009.

[7] Jeffrey Svajlenko and Chanchal Kumar Roy. Fast and flexible large-
scale clone detection with cloneworks. In Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos
Aires, Argentina, May 20-28, 2017 - Companion Volume, pages 27–30,
2017.

[8] Yuichi Semura, Norihiro Yoshida, Eunjong Choi, and Katsuro Inoue.
Ccfindersw: Clone detection tool with flexible multilingual tokenization.
In 24th Asia-Pacific Software Engineering Conference, APSEC 2017,
Nanjing, China, December 4-8, 2017, pages 654–659, 2017.

[9] Suresh Thummalapenta, Luigi Cerulo, Lerina Aversano, and Massimil-
iano Di Penta. An empirical study on the maintenance of source code
clones. Empirical Software Engineering, 15(1):1–34, 2010.

[10] Georgios Gousios and Diomidis Spinellis. GHTorrent: Github’s data
from a firehose. In 9th IEEE Working Conference of Mining Software
Repositories, MSR 2012, June 2-3, 2012, Zurich, Switzerland, pages
12–21, 2012.

[11] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The software
heritage graph dataset, March 2019.

[12] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. The promises and perils of
mining github. In Proceedings of the 11th working conference on mining
software repositories, pages 92–101. ACM, 2014.

[13] Marco Biazzini and Benoit Baudry. May the fork be with you: novel
metrics to analyze collaboration on github. In Proceedings of the 5th
International Workshop on Emerging Trends in Software Metrics, pages
37–43. ACM, 2014.

1


	References

