
A Formal Framework for Measuring Technical Lag
in Component Repositories

Ahmed Zerouali
ahmed.zerouali@umons.ac.be

University of Mons

Abstract—Reusable Open Source Software (OSS) components
for major programming languages are available in package
repositories. Developers rely on package management tools to
automate deployments, specifying which package releases satisfy
the needs of their applications. However, these specifications may
lead to deploying package releases that are outdated or otherwise
undesirable because they do not include bug fixes, security fixes,
or new functionality. In contrast, automatically updating to a
more recent release may introduce incompatibility issues. To
capture this delicate balance, we formalise a generic framework
of technical lag, a concept that quantifies to which extent a
deployed collection of components is outdated with respect to
the ideal deployment. The framework can be used to assess and
reduce the outdatedness, vulnerability and bugginess of software
deployments, software projects, software containers and reusable
software libraries. We argue that such a metric is very relevant
for assessing the health of software (eco)systems, and should be
used.

Index Terms—Empirical analysis, technical lag, software repos-
itories

EXTENDED ABSTRACT

Software components are being created and reused on a
regular basis. Over the past years, depending on external
software components has become a common software develop-
ment practice, especially in the free, Open Source community.
This practice can lead to a significant gain in productivity,
due to the ability to reuse complex functionality, rather than
implementing it from scratch.

Because these components are usually evolving to avoid
becoming obsolete, many versions of them are being created
and distributed via online package managers and repositories
everyday (e.g., npm, Maven, Debian, etc). Usually, new ver-
sions include new features, changed requirements, improved
performance, fixed bugs, etc. In general, these changes are seen
as a good sign of a well maintained software component. On
the other hand, major changes may require breaking changes.

While the availability and abundance of reusable compo-
nents facilitates building software, it can also cause problems
in maintenance and evolution. For example, a recent version
of an application may be outdated although not because of
its own code, but due to depending on components that were
not updated to their latest versions. If this happens, there is
a higher risk of having bugs and security issues that may
have been already fixed in newly released versions. On the
other hand, updating to more recent releases of reusable
components is not for free, since it might lead to a risk of

facing backward incompatible changes, which cause conflict
and problems for developers using these components. In many
cases, these problems may eventually lead to ripples through
software ecosystems.

For individual developers, there is a balance between ben-
efits (e.g., new functionality, bug and vulnerability fixes, etc)
and cost of updating a dependency (e.g., risk of having
breaking changes). To represent this balance, we introduce
the technical lag concept as a measurement to capture the
difference between the reusable software component version
that we want to update to and the deployed version of the same
software component that we rely on. The concept of technical
lag aims to quantify to which extent a deployed collection of
components is outdated with respect to an ideal deployment.
How to interpret this “ideal” and the “outdatedness” w.r.t. this
“ideal” is highly context-specific. Depending on the needs and
goals of a specific project or a maintainer, the focus may be
on functionality, security, stability or even other factors. The
“components” under consideration could be individual soft-
ware packages, third-party libraries, component dependencies,
or software containers bundling collections of components.

This extended abstract is a summary of a chain of re-
search studies including different quantitative analyses [1]–
[3], a qualitative analysis with software practitioners [4] and
an implementation of the technical lag metric in an actual
tool [5].

REFERENCES

[1] Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre De-
can, Eleni Constantinou, and Gregorio Robles. A formal framework for
measuring technical lag in component repositories — and its application
to npm. Journal of Software: Evolution and Process, page e2157, 2019.

[2] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-
Barahona. On the relation between outdated docker containers, severity
vulnerabilities, and bugs. In 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 491–
501. IEEE, 2019.

[3] Ahmed Zerouali, Valerio Cosentino, Tom Mens, Gregorio Robles, and
Jesus M Gonzalez-Barahona. On the impact of outdated and vulnerable
javascript packages in docker images. In 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 619–623. IEEE, 2019.

[4] Ahmed Zerouali. A Measurement Framework for Analyzing Technical Lag
in Open-Source Software Ecosystems. PhD thesis, University of Mons -
Belgium, 2019.

[5] Ahmed Zerouali, Valerio Cosentino, Gregorio Robles, Jesus M Gonzalez-
Barahona, and Tom Mens. A tool to analyze packages in software
containers. In Mining Software Repositories 2019 (MSR), 2019.


