
Cha-Q Info Brochure January 2015

The following are examples of the problems that we address:

• Monitoring the test process. Determine the impact of changes on both the
test and production code, to persuade team members to increase test
activities. Demonstrate that the test process itself meets quality guidelines
(e.g., every bug fix is covered by a regression test).

• Deciding what to re-test. Instead of running all tests for a given release, run
only those tests that are potentially affected by a given change. This allows
for instant feedback on the changes that cause tests to fail, saving valuable
time in identifying the precise location of a bug.

• Monitoring the bug database. Verify whether anomalies occur in the bug
database (e.g., wrong severity, assigned to wrong product or component).
Assure that all severe bugs have been fixed before a release.

• Deciding bug assignment. Once bugs have been reported, determine who is
the best person in the team to handle the request. Use historical
information to reliably estimate the time it will take to fix the bug.

• Monitoring code changes. Monitor changes as they are made in the editor or
as they are committed to the version repository. Use documented
traceability links and past co-change information to recommend related
code that should be changed accordingly (e.g., XML configuration files).

• Automating code changes. Release a new API version with patches that
automatically update all existing client code, reducing the number of API
versions in the field. Replay code changes that were successful for a given
branch on a variant branch, reducing manual branch synchronization.  

 �1

Quality software has long been
synonymous w i th so f tware
“without bugs”. Today, however,
quality software has come to mean
“easy to adapt” because of the
constant pressure to change.
Software teams seek for a delicate
balance between two opposing
forces: striving for reliability and
striving for agility. In the former,
teams optimize for perfection; in
the latter they optimize for ease of
change.

The ANSYMO (University of
Antwerp) and SOFT (University
of Brussels) research groups are
investigating ways to reduce this
tension between reliability and
agility. Together, we seek to make
changes the pr imar y unit of
analysis during quality assurance
and as such we expect to speed up
the re lea se process w i thout
sacrificing the safety net of quality
assurance.

http://soft.vub.ac.be/chaq/

CHANGE-CENTRIC
QUALITY ASSURANCE

 Changes as first-class citizens during software development

http://soft.vub.ac.be/chaq/
http://soft.vub.ac.be/chaq/

Cha-Q Info Brochure January 2015

Research on Analyzing Changes

Representing software and its changes
The quality assurance tools investigated by Cha-Q share a common representation of various
software entities (e.g., source code, tests, bug records). This change-centric representation is the
first to offer information about a) their state in a
particular snapshot of the software, b) the entire
history of their past states, and c) the changes
made in between any two successive states.
Individual changes to an entity can be analyzed,
repeated and reverted —-rendering them first-
class. We offer a change distiller to import existing
Java projects that have been versioned in a Git
repository, and a complementary change logger to
continuously update the resulting representation
as developers make changes in the IDE. The
screenshot depicts our Eclipse plugin for
navigating snapshots in a change-centric
representation.

The Implementation of the Cha-Q Meta-Model: A Comprehensive, Change-Centric Software Representation 
Coen De Roover, Christophe Scholliers, Viviane Jonckers, Javier Pérez, Alessandro Murgia, Serge Demeyer  
Electronic Communication of the European Association of Software Science and Technology, Volume 65 (2014)

Towards monitoring changes and recommending related changes to be made
Non-trivial software systems are composed of a myriad of interlinked artefacts (classes, XML
files, requirements documents). Changes to a single artefact can have an unanticipated impact on
the rest of the system. Our change-centric software representation and its accompanying change logger enable tool
support for maintaining these links, by monitoring changes to their source and destination. The screenshot
shown here depicts an Eclipse plugin that warns
about changes that would invalidate references
from XML configuration files to web service
implementations and vice versa. Its strength lies
in that it can be configured to monitor other links
that are specific to one company or to a particular
domain (e.g., links from functional requirements
to tests in safety-critical domains).

However, configuring our tool still requires explicit knowledge about which links need to be maintained. Often,
this knowledge remains implicit due to missing or outdated documentation. Techniques have been proposed to
reconstruct this knowledge from a snapshot of the system, but also from the system’s commit history. In a study
on two large open source projects, we found that the best results stem from the latter —-provided that the
commit history is sufficiently large, and that individual commits carry meaningful messages.

Explaining why Methods Change Together 
Angela Lozano, Carlos Noguera, Viviane Jonckers  
Proceedings of the 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM14)

 �2

Cha-Q Info Brochure January 2015

Example change analysis: maintenance of Selenium tests for web applications
Our change-centric software representation enables monitoring existing quality assurance
practices and processes. We investigated how developers maintain web applications and their
Selenium-based functional tests. Selenium is a popular solution for automating functional UI tests through
scripts that interact with a web browser and assert properties about the page it is rendering. However, small
changes in the web application can easily break existing test scripts. We confirmed this by studying the
development history of 6 large open source projects.

Depicted above are visualizations of the Git repositories of the XWiki, OpenLMIS and Atlas projects. The X-
axis corresponds to individual commits from a repository. The Y-axis depicts the files that are changed in each
commit. Commits to test scripts reside at the bottom of each visualization. The visualizations show that
developers do maintain a relatively small number of test scripts, but not necessarily synchronously to the
application under test. In fact, we found that it takes on average about 11.23 non-test commits before a test
script is changed. We also found that test scripts survive at most three commits on average before being deleted
or changed beyond recognition. This indicates that they are changed drastically, possibly to keep up with user
interface changes.

Turning our attention to the actual changes that
test scripts undergo, we used our change distiller
to compute all changes between successive
versions of each test script. We then categorized
these changes according to the parts of a test
script that they affect: expressions used to locate
DOM elements on a web page such as buttons (Locator), statements used to simulate interactions with a DOM
element such as clicking or entering text (Command), annotations used for demarcating individual tests
(Demarcator), and assertions about the properties of a DOM element (Assert). The above table provides insights
into which parts of a test script are most prone to changes: Locators and Asserts. A closer inspection reveals that
these often contain “magic constants” such as the identifier of a DOM element or the expected value of one of
its properties. Our recommendations are therefore clear: magic constants should not only be avoided in the
application under test, but also in its test scripts.

Prevalence and Maintenance of Automated Functional Tests for Web Applications  
Laurent Christophe, Reinout Stevens, Coen De Roover and Wolfgang De Meuter 
Proceedings of the 30th International Conference on Software Maintenance and Evolution (ICSMe14)

 �3

GitHub Repository Project Description # Commit # Sel. Commit Java LoC Sel. LoC
gxa/atlas Gene Expression Atlas Portal for sharing gene expression data 2118 358 32375 5374

INCF/eeg-database EEG/ERP portal Portal for sharing EEG/ERP portal clinical data 854 17 68262 7158
mifos/head MiFos Portfolio management for microfinance institutions 7977 505 338705 18735

motech/TAMA-Web Tama Front office application for clinics 2358 239 62034 2815
OpenLMIS/open-lmis OpenLMIS Logistics management information system 4714 1153 72275 19195

xwiki/xwiki-enterprise XWiki Enterprise Enterprise-level wiki 688 164 28405 13506
zanata/zanata-server Zanata Software for translators 3430 81 111698 3509

Zimbra-Community/zimbra-sources Zimbra Enterprise collaboration software 377 243 1025410 189413

TABLE IV: The 8 repositories in the high-quality corpus.

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●

●●●●●●● ●●●●●●●●●
●●●●
●

●●●●●● ●●●●●●●●●
●●●●●●●●●● ●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●

●●●●●●●●●
●●●● ●●●●●●●●● ●●●●●●●●●●

●●●●●●●● ●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●● ●●●●● ●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●

●● ●●●●●● ●●●●●●●●●●●●●●●
● ●● ●●●●●● ● ●●● ●●●●

0

500

1000

0 500 1000 1500
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●
●

●

●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●

●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●
●

●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●
●
●
●
●●
●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●

●●●●●● ●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●
●●●
●●
●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●● ●●●●●●●●●●●

●●●●
●●
●●●●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

0

500

1000

1500

0 1000 2000 3000 4000
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●
●●●●●●●

●

●●●
●
●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●

●

●

●●

●●●●●●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●

●

●●●

●

●●●●●●

●

●●●●●●●
●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●

●

●●●●●●●●●●●●
●●●●●●

●

●●●●●●●●●

●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●

●●●●
●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●

●●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●

●●
●●
●
●●●●
●●●●
●
●●●
●
●●
●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●
●
●
●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●● ●●●●● ●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●●

●●

●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●
●
●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●

●●
●

●●●●

●
●

●

●

●●

●●●●●●●●
●●●●

●
●

●●

●

●●●●●●●●●●●
●●●●●●

●●

●●●●
●

●●●●

●●●●●●
●
●●
●●●●●●●●●●

0

500

1000

1500

0 500 1000 1500 2000
CommitId

Fi
le
Id

ChangeType
● added−regular

added−selenium
delete−regular
delete−selenium
edit−regular
edit−selenium

Fig. 3: Change histories of the XWIKI-ENTERPRISE (left), OPEN-LMIS (middle), and ATLAS projects (right).

B. Project-specific Change Histories

Before answering RQ2 quantitatively with two new corpus-
wide metrics, we provide some visual insights into the commit
histories of individual projects from our high-quality corpus.
Figure 3 depicts a variant of the Change History Views
introduced by Zaidman et al. [23] for three randomly selected
projects. For each commit in a project’s history, our variant
visualizes whether a SELENIUM (rather than a unit test file)
or application file was added, removed or edited. The X-axis
depicts the different commits ordered by their timestamp. The
Y-axis depicts the files of the project. To this end, we assign a
unique identifier to each file. We ensure that SELENIUM files
get the lowest identifiers by processing them first. As a result,
they are located at the bottom of the graph.

Figure 3 clearly demonstrates that SELENIUM tests are
modified as the projects evolve. However, the modifications
do not appear to happen in a coupled manner. This is to be
expected as SELENIUM tests concern the user interface of an
application, while application commits also affect the appli-
cation logic underlying the user interface. Any evolutionary
coupling will therefore be less outspoken than, for instance,
between a unit test and the application logic under test.

Note that a large number of files is removed and added
around revision 1000 of the xwiki-enterprise project. The
corresponding commit message6 reveals that this is due to a
change in the project’s directory structure. We see this occur in
several other projects. In providing a more quantitative answer
to RQ2, the remainder of this section will therefore take care
to track files based on their content rather than their path alone.

C. Corpus-Wide Commit Activity Metrics

We first aim to provide quantitative insights into the pace
at which SELENIUM-based functional tests are changed as the
web application under test evolves.

1) Research method: To this end, we evaluate the high-
quality corpus against several metrics that are based on the
following categorization of commit activities:

6Commit 74feec18b81dec12d9d9359f8fc793587b4ed329

Repository #S AS

C

SS

C

AS

D

SS

D

gxa/atlas 258 6.67 1.39 1.5 0.33
INCF/eeg-database 11 75.36 1.55 98.59 2.8

mifos/head 381 19.58 1.33 6.7 0.4
motech/TAMA-Web 170 11.52 1.41 3.33 0.44

OpenLMIS/open-lmis 704 5.05 1.64 0.45 0.16
xwiki/xwiki-enterprise 96 5.33 1.71 6.94 1.95

zanata/zanata-server 51 65.65 1.59 35.82 0.72
. . . /zimbra-sources 66 1.74 3.73 1.81 7.09

TABLE V: Averaged commit activity metrics for the high-
quality corpus. The first column denotes either #SS or #AS
(cannot diverge by more than 1).

SC SELENIUM commit: commit that adds, modifies or deletes at
least one SELENIUM file.

AC Application commit: commit that does not add, modify or delete
any SELENIUM file.

The same categorization transposes to commit sequences:

SS SELENIUM span: maximal sequence of successive SC.
AS Application span: maximal sequence of successive AC.

Finally, this categorization enables computing the following
metrics about each kind of span:

AS
D,C

Length of an AS in days and in commits.
SS

D,C

Length of a SS in days and in commits.

2) Results: The next table depicts the results for the com-
mit activity metrics for the repositories in the high-quality cor-
pus. The most revealing entries are related to the average length
of the non-SELENIUM spans measured in commits (AS

C

).
It takes on average about 11.23 non-SELENIUM commits
(or 4.33 days) before a commit affects a SELENIUM file.
However, this mean is largely influenced by outliers since
the third quartile is even lower with only 9 non-SELENIUM
commits (2.05 days). These results suggest that SELENIUM-
based functional tests do co-evolve with the web application
under test.

AS

C

SS

C

AS

D

SS

D

Mean 11.23 1.59 4.33 0.66
Std Deviation 73.07 1.36 33.66 4.9

1st Quartile 2 1 0.05 0.02
Median 4 1 0.54 0.06

3rd Quartile 9 2 2.05 0.36

●

●

●

0.0

0.1

0.2

0.3

0.4

assertion command constant demarcator location
Change Classification

C
ha

ng
e

H
it

R
at

io

Fig. 6: Summary of the corpus-wide change classification.
Project Total Locator Command Demarcator Asserts Constants
Atlas 8068 90 3 104 3282 2586
XWiki 68665 115 154 24 1490 3114
Tama 31821 95 89 43 36 571
Zanata 12959 497 119 0 1 906
EEG/ERP 248 3 0 0 6 24
OpenLMIS 69792 2550 401 8 3454 8972

TABLE VII: Project-scoped change classification.

changes. Table VII lists project-scoped results. Our tool timed
out on two projects of the corpus with an extensive history.

The most frequently made changes are those to con-
stants and asserts. These are the two test components that
are most prone to changes. Constants occur frequently in
locator expressions to retrieve DOM elements from a web
page and in assert statements as the values compared against.10

Focusing future tool support for test maintenance on these
areas might therefore benefit test engineers most. Existing
work about repairing assertions in unit tests [4], and about
repairing references to GUI widgets in functional tests for
desktop applications [12] suggests that this is not infeasible.
Note that existing work also targets repairing changes in test
command sequences [15], but such repairs do not seem to
occur much in practice.

Both outliers in our results stem from the ATLAS project.
Its test scripts contain hardcoded genome strings inside assert
statements that are frequently updated.

D. Threats to Validity

The edit script generated by CHANGENODES is not always
minimal. It may incorrectly output a sequence of redundant
operations for nodes that are not modified. This is due to
some of the heuristics used by the differencing algorithm.
These unneeded operations only form a small set of the total
operations. We have performed random validations of distilled
changes to ensure the correctness of our results.

Several changes are classified by looking at names of
methods, without using type information. Computing this
information would be too expensive to do our experiments on
multiple large-scale projects. As a result some changes may
be incorrectly classified.

We have been unable to find examples of some of the
change categories from Section II. This is either due to our
change query being too strict, the patterns not being present in
the examined projects or due incorrectly distilling the changes
made to the SELENIUM scripts.

10Our tool classifies such changes also in the locator or assertion category.

VI. RELATED WORK

Little is known about how automated functional tests are
used in practice. A notable exception is Berner et al. [1]’s
account of their experiences with automated testing in in-
dustrial applications. Their observation “The Capability To
Run Automated Tests Diminishes If Not Used” underlines
the importance of test maintenance. In interviews with ex-
perts from different organizations, an industrial survey [16]
found that the main obstacles in adopting automated tests
are development expenses and upkeep costs. Finally, Leotta
et al. [17] recently reported on an experiment in which the
authors manually created two distinct sets of SELENIUM-based
automated functional tests for 6 randomly selected open-source
PHP projects. While the first set of tests corresponds to the test
scripts studied in this paper, the second set of tests is created
using a capture-and-replay functionality of the SELENIUM
IDE. The authors find that the latter are less expensive to
develop in terms of time required, but much more expensive to
maintain. To the best of our knowledge, ours is the first large-
scale study on the prevalence and maintenance of SELENIUM-
based functional tests —albeit on open-source software.

Unit tests have received more attention in the literature. The
work of Zaidman et al. [23] on the co-evolution of unit tests
with the application under test is seminal. Apart from “Change
History Views” (cf. Section IV-B), they also proposed to plot
the relative growth of test and production code over time in
“Growth History Views”. This enables observing whether their
development proceeds synchronously or in separate phases.
Fluri et al. follow a similar method in their study on co-
evolution of code and comments [8]. The same goes for a
study on co-evolution of database schema and application code
by Goeminne et al. [11]. Our metrics from Section IV aim to
provide quantitative rather than visual insights into this matter,
based on commit activities rather than code growth.

Method-wise, there are several works tangential to ours
in mining software repositories. Germàn and Hindle [18], for
instance, classify metrics for change along the dimensions of
whether the metric is aware of changes between two distinct
program versions, of whether the metric is scoped to entities
or commits, and of whether the metric is applied at specific
events or at evenly spaced intervals. The commit activity and
maintenance metrics from Section IV are scoped to commits
and SELENIUM files, unaware and aware of program changes,
and applied at every and specific types of commits respec-
tively. Several techniques and metrics have been proposed for
detecting co-changing files in a software repository (e.g., [13],
[24]). We expect such fine-grained evolutionary couplings to
be less outspoken in our setting because test scripts exercise
an implemented user interface along extensive scenarios, rather
than the implementation itself. More research is needed.

Section V distilled and subsequently categorized changes
within each commit to a SELENIUM file. Similar analyses have
been performed using the CHANGEDISTILLER [9] tool. The
aforementioned study by Fluri et al. [8], for instance, includes
a distribution of the types of source code changes (e.g., return
type change) that induce a comment change. Another fine-
grained classification of changes to Java code has also been
used to better quantify evolutionary couplings of files [7]. In
contrast to these general-purpose change classifications, ours
is specific to automated functional tests. More coarse-grained

Cha-Q Info Brochure January 2015

Research on Automating Changes

Advanced search-and-replace
Developers often perform repetitive
changes to source code. For instance, to repair
duplicate occurrences of a bug or to update all clients
of a library to a newer version. Manually performing
such changes is laborious and error-prone. Structural
search-and-replace, as seen in IntelliJ, is the state of
the art in tool support. It lets developers automate
changes using search and replacement templates of
code. Unfortunately, code that deviates the littlest
from the search templates will not be found and
hence not be replaced. The Cha-Q project is taking
this idea to the next level: a powerful, but user-friendly program
transformation tool that is decidedly template-driven.

Shown on the right are repetitive changes that stem from our own
commit history. All fields of type EntityIdentifier carrying an
@EntityProperty annotation had to receive their annotation’s value as a type parameter. The screenshot depicts
the search and replacement templates that automate these changes for 266 different fields dispersed throughout
97 files. The replacement template, after the => arrow, is instantiated for each match for the search template
before the arrow. Next to wildcards … and placeholder variables ?annotype and ?fieldtype (substituting for field
names, types and annotation values), directives such as equals and replace within each template further control
what code has to be changed and how. The prototype already lends itself to API evolution scenarios. For
instance, a scenario in which three deprecated method calls need to be replaced by a single call to a new method
throughout all client code —-while accounting for changes in exception handling and intermediate return values.

The Ekeko/X Program Transformation Tool  
Coen De Roover and Katsuro Inoue  
Proceedings of 14th IEEE International Working Conference on Source Code Analysis and Manipulation (SCAM14)

Case Study: Predicting Bug Fixing Time

Software teams keep track of issues with systems such as Jira or Bugzilla.
However, such systems may play a more pro-active role than merely
managing the workflow within the team. In particular, one might
estimate the time to resolve an issue based on the resolution time of
similar issues in the past. Good estimation on the time to fix is crucial for
improving customer satisfaction and project planning.

In the Cha-Q project we have developed a prototype tool for estimating
the issue resolution time. Using the historical data reported in the issue
tracking system (e.g. component, priority), we estimate the likelihood
that an issue will be fixed within a certain amount of time. Moreover, we
analyze how these estimations vary depending on the information inside the
reported issue. The figure to the right shows a box-plot with the estimates depending on the
priority. Priority 1 issues (most urgent) are indeed handled faster than others. This may come in
handy for demonstrating that service level agreements are met.

The data shown here is based on a sample of the bug database of one of the Cha-Q partners. In the coming
months we will replicate this experiment on other bug databases to assess the quality of the estimates during
SCRUM sprints.

 �4

how to change each field

what fields to change

fields about to be changed

//Before changes: 1

@EntityProperty(value = SimpleName.class) 2

private EntityIdentifier label; 3

//After changes: 4

@EntityProperty(value = SimpleName.class) 5

private EntityIdentifier<SimpleName> label; 6

Fig. 2: Example of changes for the type parameter case.

[@EntityProperty(value=?annoType.class)]@[match|set] 1

[Identifier]@[(equals ?fieldType)] ...; 2

=> 3

[Identifier<?annoType>]@[(replace ?fieldType)] 4

Fig. 3: Initial specification for the type parameter case.

declarations in any order. A single class can therefore feature
as the match for the LHS template multiple times, once for
each 3-tuple of a field and its accessor methods. Lines 5 and
9 rely on the refers-to directive to ensure that the getter and
setter actually operate upon the ?field that matches line 3.
Lines 4 and 7 respectively extract their return and parameter
type, which receive a type parameter on lines 14 and 15. The
deep matching directives child* on lines 3, 4, 7 ensure that
the types of the form List<Identifier> in the program also
match the Identifier types in the template.

B. Example: Generating a Visitor for a Class Hierarchy

Figure 5 illustrates the repetitive changes that need to
be performed when implementing a Visitor for the same
class hierarchy. Every class in the ASTNode hierarchy is to
receive a acceptVisitor method that double dispatches to a
corresponding visit<Class> method that is to be declared in
an existing, but empty IASTVisitor interface. Note that this
requires changing the import declarations of the compilation
units in which these classes reside.

Figure 6 depicts the EKEKO/X specification that automates
these changes. Both its LHS and RHS consist of multiple
templates. The template on lines 1–3 identifies the classes in
our hierarchy and binds them and their list of body declarations
to ?visited and ?bodyVisited respectively. To this end, the
wildcard on line 2 substitutes for the type extended by the
class, which matching directive subtype*|sname requires to be

... class ... { 1

[@...(value=?annoType.class) 2

private [Identifier]@[child* (equals ?fieldType)] ?field; 3

public [Identifier]@[child* (equals ?returnType)] ...(){ 4

return [...]@[(refers-to ?field)]; 5

} 6

public void ...([Identifier]@[child* (equals ?paramType)] 7

?param){ 8

[...]@[(refers-to ?field)]=[...]@[(refers-to ?param)]; 9

} 10

]@[match|set]} 11

=> 12

[Identifier<?annoType>]@[(replace ?fieldType)] 13

[Identifier<?annoType>]@[(replace ?returnType)] 14

[Identifier<?annoType>]@[(replace ?paramType)] 15

Fig. 4: Final specification for the type parameter case.

//Visitor compilation unit after changes: 1

import be.ac.chaq.model.ast.java.visitor.IASTVisitor; 2

public class BreakStatement extends Statement { 3

public void acceptVisitor(IASTVisitor visitor){ 4

visitor.visitBreakStatement(this); 5

} //... 6

} 7

//Visited compilation units after changes: 8

import be.ac.chaq.model.ast.java.BreakStatement; 9

public interface IASTVisitor { 10

public void visitBreakStatement(BreakStatement o); //... 11

} 12

Fig. 5: Example of changes for the visitor case.

[public class ?visitedName 1

extends [...]@[(subtype*|sname ASTNode)] 2

?bodyVisited]@[(equals ?visited)] 3

package be.ac.chaq.model.ast.java; 4

?visitedImports 5

[?visited]@[match|set] 6

package be.ac.chaq.model.ast.java.visitor; 7

?visitorImports 8

public interface IASTVisitor { 9

} 10

=> 11

[public void acceptVisitor(IASTVisitor visitor){ 12

visitor.(str "visit" ?visitedName)(this); 13

} 14

]@[(add-element ?bodyVisited)] 15

[import be.ac.chaq.model.ast.java.visitor.IASTVisitor;] 16

@[(add-element ?visitedImports)] 17

[import be.ac.chaq.model.ast.java.?visitedName;] 18

@[(add-element ?visitorImports)] 19

[public void (str "visit" ?visitedName)(?visitedName o);] 20

@[(add-element ?bodyVisitor)] 21

Fig. 6: Specification for the visitor case.

a subtype of ASTNode or ASTNode itself. The template on lines
4–6 matches the compilation unit that declares this ?visited

class, together with its import declarations. Note that we could
have also put lines 1–3 inside this template, similarly to the
previous example. We chose not to in order to demonstrate
how meta-variables can be used to compose templates.

The RHS of the specification uses the add-element rewrit-
ing directive to add the required method and import declara-
tions. Some of these templates feature a Clojure expression
that substitutes for a regular node. For instance, expression
(str "visit" ?visitedName) evaluates to a string for the
name of the method that is to be added to the visitor for
each visited class. Users are responsible for ensuring that such
expressions evaluate to a syntactically valid replacement value.

VI. RELATED WORK

Language-wise, the JUNGL [?] transformation language is
closely related. It also advocates the use of functional pro-
gramming (ML) for changing subjects identified through logic
programming (Datalog), but does not feature code templates.
It incorporates regular expressions over the paths through a
control flow graph to express control flow characteristics. Our
code templates support matching directive match|regexp-path
on statement lists to this end, using an EKEKO-based imple-
mentation [?] of path logic programming [?].

Cha-Q Info Brochure January 2015

Case Study: Assessing Test Quality

For adequate testing, software teams need tests which maximize
the likelihood of exposing a defect. Traditionally the adequacy of
a test suite is assessed using test coverage, revealing which
statements in the code base are poorly tested. Monitoring the
test coverage is a recommended practice, but only provides an
initial approximation. Additional measures are necessary to
ensure that the test suite is effective in exposing defects.

Mutation testing is the next logical step. A mutation test
deliberately injects one defect into the base code, creating a so-
called mutant. When running the test suite, at least one test
should fail, in which case the test suite is said to kill the mutant.
Doing this for a series of mutants, the ratio between the number
of killed mutants versus the total number of mutants injected is a
measure for the adequacy of the test suite.

A student internship within Agfa HealthCare NV investigated
the effectiveness of mutation testing for unit testing. A case
study on a critical component (38K lines of Java code) confirmed
that its unit test suite is quite strong. In particular the mutation
tests confirmed that the black box test killed all mutants,

something which could not be inferred from the branch coverage. Nevertheless (as can be seen in the figure)
some classes could benefit from additional unit tests.

Mutation Analysis: An Industrial Experience Report.  
Ali Parsai. Promoter: Prof. Serge Demeyer. 
Masters thesis; January 2015. Computer Science, University of Antwerp.

Case Study: Deciding What to Retest

Unit testing is an established practice within agile software
development. In many projects, roughly half of the entire code base
consists of unit tests. Unfortunately, running all the tests easily takes
several hours, hence developers are less inclined to run the test suite
after each and every change. Thus, software is vulnerable for extended
periods of time as the production code evolves, but the test code does
not (immediately) follow.

Test-selection addresses this issue, by deducing the subset of (unit)
tests that need to be re-executed given a series of changes to the
production code. Upon commit, the test selection tool needs only a
few minutes to assess whether the changes are safe; the complete test
suite is executed during the nightly build.

An experiment with a code base owned by “Agentschap Wegen en
Verkeer” demonstrated that test-selection might work in practice. We
analyzed the complete history of a small project (56K lines of Java code
spanning 14 months of development) retroactively running the
complete test-suite for every commit in the version control system. We
discovered a few failing test-runs and showed that the test-selection
tool would have identified the culprits.

Change-based test selection in the presence of developer tests.  
Quinten Soetens, Serge Demeyer, and Andy Zaidman. 
Proceedings of 13th European Conference on Software Maintenance and Reengineering (CSMR13)

 �5

5.2. ANALYSIS OF THE RESULTS 33

Figure 5.1: Mutation coverage results of classes in Segmentation component
sorted in decreasing order

Figure 5.2: Mutation coverage results of classes in Segmentation component
sorted by branch coverage

The red line shows the mutation coverage in % for
every class sorted from most to least. The vertical blue
bars show the branch coverage.

Branch coverage vs. mutation coverage

Cha-Q Info Brochure January 2015

We need you !

We are halfway into the project; the basic tool infrastructure is
in place and has been validated on open-source projects. In the
next two years (2015 — 2016) we intend to test the tools under
realistic circumstances. That's why we need your help.

We seek software teams interested in state-of-the-art tooling.
In particular, those teams that

• Adopt agile practices 
(continuous integration, continuous delivery).

• Employ a version control system (SVN, GitHub).

• Track the issues (Bugzilla, JIRA).

• Monitor software quality 
(unit tests, static analysis, security vulnerabilities).

• Release often (at least internally).

We offer a seat in our industrial steering board.

• Meetings twice a year (Antwerp or Brussels);  
discuss with likeminded people.

• Roadmap for future software engineering tools.

• Opportunities for student internships 
(e.g., see "Case Study: Assessing Test Quality” on p.5).

• Participation in Experiments 
(e.g., see "Case Study: Deciding What to Retest” on p.5).

• Possibilities for follow-up research projects.

 �6

How to join ?

Contact Prof. Serge Demeyer
(serge.demeyer@uantwerpen.be
— 03/265.39.08) or Prof. Coen De
Roover (cderoove@vub.ac.be —
02/629.34.92).

• Participation in the steering
board is free of charge.

• You send us a letter of intent,
detailing what is most attractive to
you.

• You commit to attend one
meeting per year.

Current members

Tool demonstration

To learn more about what we achieved over the last two years, come to our tool
demonstration:

Tuesday, February 24th — 13:00 till 17:30 
Campus Middelheim, Universiteit Antwerpen

Details (program, location, registration) at http://soft.vub.ac.be/chaq/

http://soft.vub.ac.be/chaq/
mailto:serge.demeyer@uantwerpen.be
mailto:cderoove@vub.ac.be
mailto:serge.demeyer@uantwerpen.be
mailto:cderoove@vub.ac.be
http://soft.vub.ac.be/chaq/

