
Cha-Q Info Brochure November 2016

The Cha-Q project addresses a range of challenges, including:

• Monitoring code changes. Monitor changes as they are made in an IDE or as
they are committed to the version repository. When making changes to
one artefact, receive notifications of which related artefacts should be
changed as well. (see p. 2 for more information)

• Automating code changes. Reduce the effort to perform systematic edits,
such as adjusting code to a newer API, migrating to another library or
framework, fixing multiple instances of a bug, or applying custom
refactorings. Replay code changes that were successful for a given branch
on another branch, reducing manual branch synchronisation. (p. 3)

• Monitoring test suite quality. Automatically measure a test suite’s ability to
detect bugs in the system, based on previous bugs found in the project’s
history. If bugs are not caught by a test suite, the developer is assisted with
improving the test code’s strength. (p. 4)

• Estimating task effort. Based on the issue tracking history of a software
project, automatically and reliably estimate the amount of effort that is
required to address an issue or a task. (p. 5)

• Mining repositories for systematic edits. Discover occurrences of repeated,
systematic edits in a project’s history, and use this information to either
minimise the need for such repeated edits, or generate a custom
refactoring that automates them. (p. 5)

• Monitoring the test process. Determine the impact of changes on both the
test and production code to persuade team members to increase testing
activities. Demonstrate that it is possible to maintain the test code
synchronised with the GUI. (p. 6) 

 �1

Quality software has long been
synonymous w i th so f tware
“without bugs”. Today, however,
quality software has come to mean
“easy to adapt” because of the
constant pressure to change.
Software teams seek for a delicate
balance between two opposing
forces: striving for reliability and
striving for agility. In the former,
teams optimise for perfection; in
the latter they optimise for ease of
change.

The ANSYMO (University of
Antwerp) and SOFT (University
of Brussels) research groups are
investigating ways to reduce this
tension between reliability and
agility. Together, we seek to make
changes, the primar y unit of
analysis during quality assurance
and as such we expect to speed up
the re lea se process w i thout
sacrificing the safety net of quality
assurance.

http://soft.vub.ac.be/chaq/

CHANGE-CENTRIC
QUALITY ASSURANCE

 Changes as first-class citizens during software development

http://soft.vub.ac.be/chaq/
http://soft.vub.ac.be/chaq/

Cha-Q Info Brochure November 2016

Maintaining Traceability Links at Inventive Designers

Non-trivial software systems consist of many different types of artefacts that are interlinked. For
instance, there are often links from XML files to specific classes in source code files. Changes to
a single artefact can have an unanticipated impact on other related artefacts. These changes form
a common source of errors in software projects that use multiple artefact types. While
development environments support many different types of artefacts, they often do not consider the so-called
traceability links between them.

These errors, while trivial in nature, are costly to find. To remedy this, we have developed a tool called MaTraca.
This tool keeps track of the traceability links between artefacts and ensures that developers are aware of them:
if one artefact is changed, MaTraca users are shown which parts of other artefacts must change as well. We have
used MaTraca at Inventive Designers on their core product, Scriptura Engage. Scriptura Engage contains 200
plugin projects, and spans over 2 millions lines of code. Apart from source code, there are several other types of
artefacts such as web pages and XML configuration files, where MaTraca serves to maintain the links between
all of these artefacts.

The screenshot on the
right depicts a view of the
tool that, in this example,
keeps t rack o f l inks
between web pages and
their corresponding web
service implementations.
The tool notifies users
about which links still are satisfied, and which links have become broken due to an artefact change.

MaTraca enables developers to mark links of interest, locate the specific artefact parts on both sides of each
link, and evaluate compliance of these links. That is, whether a link still is correct, broken, or only partially
correct because the parameters on both ends of the link no longer match. For example, a method parameter in a
Java file may need to correspond with an attribute value in an XML configuration file. One of MaTraca’s
strengths is its configurability: it can be set up to monitor various types of links that are specific to one company
or to a particular domain, such as links from functional requirements to tests in safety-critical domains.

We have put MaTraca to the test at Inventive Designers with a pilot study, in which a group of junior and senior
developers performed several development tasks, stemming from real modification requests, and involving
different types of artefacts. For each task, we compare how developers who were allowed to use MaTraca fared
against the developers who could only rely on their usual development environment. Our study confirms that
MaTraca is beneficial for the identification and maintenance of links between artefacts, that it detects mistakes
or omissions early, and that the tool gives the developers confidence that their modifications are correct.

Managing Traceability Links With MaTraca 
Angela Lozano, Carlos Noguera, and Viviane Jonckers 
Proceedings of the 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2016)

 �2

Cha-Q Info Brochure November 2016

Automating Systematic Edits at FOD Financiën

Developers often need to perform similar, but non-identical, changes to different files. For
instance, updating all clients of a library to a newer version. Manually performing such
systematic edits is laborious and error-prone. To better understand the prevalence of systematic
edits in practice, we analysed a year of development activity at FOD Financiën. We studied Tax-
on-web’s widely used tax simulation service (274.000 lines of code, 751 commits in a year). Producing correct
results is crucial for this service, which is why FOD Financiën employs continuous integration to frequently test
their code. However, the code often needs to be updated under time pressure to accommodate tax law changes.

As our study found that 16% of all commits contain systematic edits (each
affecting 101.6 lines of code on average), tool support for performing
systematic edits faster —and with fewer mistakes— is in order. Other
researchers even found numbers as high as 75% for older projects that
primarily receive maintenance work. The chart on the right provides a closer
look into the systematic edits we found. Some involve one-line changes that
are repeated in hundreds of different locations, whereas others represent
larger changes that are only repeated tens of times. Both kinds of edits
however represent a substantial manual effort, and a simple search-and-
replace does not suffice for context-dependent modifications spread across hundreds of files.

The Cha-Q project has therefore developed a powerful, but user-friendly, program transformation tool. It won a
best paper award at the International Conference on Software Analysis, Evolution and Re-engineering. Using this tool,
we are able to fully automate about 62.6% of the
systematic edits to the tax simulation service. The
remaining systematic edits can be automated partially;
i.e., they require some manual work afterwards.

One of the transformations used to automate the
systematic edits is shown to the right. The effect of
the transformation is shown below it. Whenever a
field is added to the ReportCalcSummary class, its
toString() method needs to be updated, and methods
to get/set the field should be added. Lines 1-2 specify
which field to add. Lines 3-5 specify which parts of the
class need to change. Lines 7-11, after the ==> arrow,
specify how these parts should change. Placeholder
variables such as ?receiver substitute for code. Directives such
as equals, match | set or add-element, exert fine-grained control
over which code has to be changed and how.

Our program transformation tool can be used to automate
different scenarios involving systematic edits: repairing
multiple instances of a bug, adjusting the code to API
changes, migrating to alternative libraries or frameworks, creating custom refactorings, etc.

Search-Based Generalization and Refinement of Code Templates  
Tim Molderez and Coen De Roover 
Proceedings of the 8th Symposium of Search Based Software Engineering (SSBSE 2016) 

 �3

public class ReportCalcSummary implements Serializable {

+ private Long impotReferRegulPos;

+ public Long getImpotReferRegulPos() {

+ return impotReferRegulPos;}

+ public void setImpotReferRegulPos(Long impotReferRegulPos) {

+ this.impotReferRegulPos = impotReferRegulPos;}

...

+ .append("impotReferRegulPos = ") .append(this.impotReferRegulPos)

0
2
4
6
8
10
12
14
16
18

0 100 200 300 400 500

In
st
an
ce
	s
iz
e	
(li
ne
s	c
ha
ng
ed
)

Instances

1 ?name = "impotReferRegulPos"

2 ?type = "Integer"

3 public class ReportCalcSummary implements Serializable {

4 [public String toString() {?receiver.append(")");

5 }]@[(equals ?members) (match|set)]}

6 ==>

7 [private ?type ?name;]@[(add-element ?members)]

8 [public ?type get?name() {return ?name;}]@[(add-element ?members)]

9 [public void set?name(?type ?name) {

10 this.?name = ?name;}]@[(add-element ?members)]

11 [?receiver.append(“?name").append(this.?name)]@[(replace ?receiver)]

Cha-Q Info Brochure November 2016

Strengthening the Regression Test Suite at HealthConnect

HealthConnect is a Belgian company with deep expertise in integration architectures, software
development, eHealth integration and project management in the health sector. One of
HealthConnect's products is CareConnect: the first Belgian cloud-based Electronic Medical
Record software for general practitioners. CareConnect engages itself to be the first to integrate
the latest eHealth services into its software. To deal with the rapid changes, CareConnect has a fully automated
regression test suite to ensure that the new features do not break any existing functionality. The reputation of
CareConnect largely depends on their ability to prevent regression bugs, and HealthConnect was interested to
assess potential weaknesses in their regression test suite.

The Cha-Q team made such an assessment by
means of mutation testing, a well-studied method
of strengthening a test suite. It consists of two
phases: first, “mutants” are generated. A mutant
is a buggy version of the code that is created by
automatically injecting a single bug into the code.
Second, the test suite is executed on this buggy
version of the code to verify whether the test
suite is able to detect the bug. If the bug is not
caught by the test suite, this mutant has
uncovered a weakness in the test suite. Because it
is known which bug was injected, the test
developer also has an indication of how the test
suite should be improved.

For this particular feasibility study, we modelled the mutants after a set of difficult bugs. We identified these
bugs via a manual inspection of HealthConnect issue tracking system, looking for bugs which almost slipped
into the field, would have caused major trouble, yet are very difficult to find. This inspection ultimately resulted
in two classes of bugs: (i) collection order bugs, and (ii) null type bugs.

In the former, an order-preserving data structure is changed into an unordered one (e.g. a LinkedHashSet would
be replaced by a HashSet). In the latter, null type bugs are introduced at different points in a method (e.g. the
input value for a method is replaced by null, or instead of initialising an object, it is replaced by null). We
injected these mutants into the common component of the CareConnect software suite (comprising over
50,000 lines of Java code), as it is one of the components suspected of having weaknesses. We discovered that
overall the regression test suite does not catch most of these mutants (caught 1259 out of 10245 — 12.3%
mutation coverage). The remaining mutants provide a detailed target for the tests that need to be added.

In the near future we will replicate this experiment in other sites. Here as well, we will start from the issue
tracking system to identify difficult bugs, model mutants after these bugs, inject them into the system, run the
regression test suite, and assess whether the test suite is strong enough.

Adaptable Mutation Testing for Continuous Integration Environments  
Ali Parsai, Alessandro Murgia, Serge Demeyer and Coen De Roover 
Proceedings of 14th BElgian-NEtherlands software eVOLution seminar (BENEVOL 2015) 

 �4

Cha-Q Info Brochure November 2016

Exploiting the Issue Tracker for Project Planning at Inventive Designers

Inventive Designers is a software company providing a multichannel customer communications
platform. Internal software development is organised around SCRUM, an agile development
process for developing and sustaining complex products. One technique used in the SCRUM
process is planning poker. Over the last 2 years, Inventive Designers organises a planning poker
session every two weeks and they are quite happy with the result. During this meeting, team members estimate
the relative effort of the remaining issues and tasks in the sprint backlog. However, it sometimes is necessary to
provide estimations for issues and tasks before the team gathers for the planning poker session.

That is where the Cha-Q team can help. We retrieved 699 issue reports stored
in the issue tracking system of Inventive Designers (JIRA) for further analysis.
We applied a series of text mining techniques on this data and derived a
recommendation system to estimate the effort needed for addressing issues. An
estimate is produced by comparing a pending issue report against all previous
issues. These estimates can then be used before the planning poker session. A
retrospective simulation shows that our estimates achieve a “mean magnitude
of relative error” of 0.5, which is the same score as the developers’ own estimations.

We also verified that the recommendation system can be helpful during planning poker sessions, where its
estimates can supplement the discussion whenever there is a disagreement in the team. In this case, the system
can show a list of keywords that influenced the estimate, which are invaluable for improving the issue reports
and to reach agreement. Based on this experiment, we believe the system can help the team to schedule the
developers’ workload, and help long-term project planning.

Estimating Story Points from Issue Reports 
Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and Roberto Tonelli  
Proceedings of the 12th Int. Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE 2016)

Mining systematic edits at TP Vision

When developing software, it sometimes is necessary to perform similar edits in multiple source
code locations, e.g. when adjusting code to API changes. Such systematic edits may
(unconsciously) be repeated several times. To provide insights into the systematic edits that
occur throughout a project’s history, we created a prototype tool. It makes use of big data
processing techniques, to find similar changes that frequently occur together in one commit.

To test our tool in the field, we did a study at TP Vision, which is engaged in producing a wide
range of television sets. The software for each set shares many commonalities, but also has
subtle differences. Because of this, it is important to know about the systematic edits that are
present, and to design the system to keep these systematic edits at a minimum. In our study,
we applied our tool to one of TP Vision’s source code repositories (27.648 lines of code, 1654
commits). Our findings in the table to the right indicate that systematic edits do occur
frequently. For example, the third row states that in 98 different systematic edits, a similar edit
was performed in 5 different locations. The output of our tool can be used to motivate a
restructuring of the code to minimise systematic edits. We can also automate a given
systematic edit and generate a custom refactoring for it, to save time and effort whenever the
systematic edit needs to be applied to an additional location.

Mining Change Histories for Unknown Change Patterns. 
Arvid de Meyer  
Master’s thesis, August 2015, Vrije Universiteit Brussel 

 �5

Sys. edits # Instances

467 3

221 4

98 5

88 6

49 7

41 8

29 9

15 10

10 11

5 12

Cha-Q Info Brochure November 2016

TestTraceabilityManager: Keeping the GUI and its Tests in Sync

Test maintenance is an important part of software development, especially in case of GUI tests. When code is
added or modified, test maintenance is necessary to verify that the production code is still tested properly.
Keeping track of the relationships between these tests and the code reduces the complexity of this task.

To do this, we created “TestTraceabilityManager”, a tool for
automatically creating and maintaining traceability links
between QML software artefacts and QML tests within the
QtCreator IDE. This is the first tool that brings traceability
links to the QML environment. The tool is also able to
automatically maintain and adapt traceability links during
development without needing a full re-analysis of the
project. It tracks the changes made to the software project
since the last analysis in a non-intrusive way. This approach
can save valuable time for the maintainers of these tests. By
analysing an open source system, we validated the correctness
of the results against a manually created reference set of traceability links. Our tool correctly retrieved 97% of
all links.

Automated traceability links between test and production code in QML interfaces 
Detlev Van Looy 
Master’s thesis, January 2016, Universiteit Antwerpen

 �6

Interested? - Contact us

Cha-Q is reaching its conclusion,
but this is only the beginning of
research on change-centric quality
assurance, and we need your help!

If you are interested in launching a
follow-up research project with us, 
contact Prof. Serge Demeyer
(serge.demeyer@uantwerpen.be —
03/265.39.08) or Prof. Coen De
Roover (cderoove@vub.ac.be —
02/629.34.92).

Tool demonstration event

To learn more about what we achieved within the Cha-Q project, 
we invite you to join our tool demonstration event:

Monday, December 5th — 13:00 till 17:30 
U-Residence, Vrije Universiteit Brussel

Program, location, and registration at http://soft.vub.ac.be/chaq/

Cha-Q members

http://soft.vub.ac.be/chaq/
mailto:serge.demeyer@uantwerpen.be
mailto:cderoove@vub.ac.be
http://soft.vub.ac.be/chaq/
mailto:serge.demeyer@uantwerpen.be
mailto:cderoove@vub.ac.be

