
Lappy 386

#chaq16

CHA-Q
Change-centric quality Assurance

December 2016

CHa-Q Open Tool Demonstration — December 2016

Agenda

[12:30 - 13:00] — Registration

[13:00 - 13:30] — Welcome Prof. S. Demeyer (UA) and Prof. C. De Roover (VUB)
[13:30 - 14:20] — Pilot Studies on Cha-Q Technology for "Mining and Automating Past Changes"
 - Mining Git Repositories for Repeated Systematic Edits at TPVision - Reinout Stevens (VUB)
 - Automating Systematic Edits at FOD Financiën - Tim Molderez (VUB)

[14:20 - 14:30] — Coffee break

[14:30 - 14:55] — Pilot Studies on Cha-Q Technology for "Monitoring Ongoing Changes"
 - Maintaining Explicit Inter-Artefact Links at Inventive Designers - Angela Lozano (VUB)
[14:55 - 15:45] — Pilot Studies on Cha-Q Technology for "History-Inspired Decision Making"
 - Exploiting Issue Tracker for Project Planning at Inventive Designers - Murgia Alessandro (UA)
 - Strengthening the Regression Test Suite at HealthConnect - Ali Parsai - (UA)

[15:45 - 15:55] — Coffee break

[15:55 - 16:45] — Invited Talk
 "What Software Analytics Can Do for Developers and Testers"
 Andy Zaidman (Delft University of Technology, The Netherlands)

[16:45 - 18:00] — Poster Reception and Networking Drink

3

CHa-Q Open Tool Demonstration — December 2016

Practical Arrangements

4

CHa-Q Open Tool Demonstration — December 2016

Practical Arrangements

4

CHa-Q Open Tool Demonstration — December 2016

Practical Arrangements

4

CHa-Q Open Tool Demonstration — December 2016

Program Issues

5

CHa-Q Open Tool Demonstration — December 2016

Program Issues

5

CHa-Q Open Tool Demonstration — December 2016

Program Issues

5

CHa-Q Open Tool Demonstration — December 2016

• Idea. Unproven concept, no testing has been performed

• Basic research. Principles postulated and observed; no experimental proof available

• Technology formulation. Concept and application have been formulated

• Applied research. First laboratory tests completed; proof of concept

• Small scale prototype built in a laboratory environment (“ugly” prototype)

• Large scale prototype tested in intended environment

• Prototype system tested in intended environment close to expected performance

• Demonstration system operating in operational environment at pre-commercial scale

• First of a kind commercial system. Manufacturing issues solved

• Full commercial application, technology available for consumers.

TRL 0

TRL 1

TRL 2

TRL 3

TRL 4

TRL 5

TRL 6

TRL 7

TRL 8

TRL 9

Technology Readiness Level

6

CHa-Q Open Tool Demonstration — December 2016

• Idea. Unproven concept, no testing has been performed

• Basic research. Principles postulated and observed; no experimental proof available

• Technology formulation. Concept and application have been formulated

• Applied research. First laboratory tests completed; proof of concept

• Small scale prototype built in a laboratory environment (“ugly” prototype)

• Large scale prototype tested in intended environment

• Prototype system tested in intended environment close to expected performance

• Demonstration system operating in operational environment at pre-commercial scale

• First of a kind commercial system. Manufacturing issues solved

• Full commercial application, technology available for consumers.

TRL 0

TRL 1

TRL 2

TRL 3

TRL 4

TRL 5

TRL 6

TRL 7

TRL 8

TRL 9

Technology Readiness Level

6

CHa-Q Open Tool Demonstration — December 2016

Partners

7

WHY ?

CHa-Q Open Tool Demonstration — December 2016

Reliability vs. Agility

9

Software is vital to our society ⇒ Software must be reliable

Traditional Software Engineering
Reliable = Software without bugs

Today’s Software Engineering
Reliable = Easy to Adapt

Striving for
RELIABILITY

(Optimise for
perfection)

Striving for
AGILITY

(Optimise for 
development speed)

On the Origin 
of Species

CHa-Q Open Tool Demonstration — December 2016

Continuous Integration / Deployment

10

CHa-Q Open Tool Demonstration — December 2016

Software Repositories & Archives
Version Control

• CVS, Subversion, Git, …
• Rational ClearCase
• Perforce,
• Visual Source Safe
• …

Issue Tracking
• Bugzilla
• BugTracker.NET
• ClearQuest
• JIRA
• Mant
• Visual Studio Team Foundation

Server
• …

Automate the Build
• make
• Ant, Maven
• MSBuild
• OpenMake
• Build Forge
• …

Automated Testing
• HP QuickTest Professional
• IBM Rational Functional Tester
• Maveryx
• Selenium
• TestComplete
• Visual Studio Test Professional

 Microsoft 2010
• …

11

… mailing archives, newsgroups, chat-boxes, facebook, twitter, …

CHa-Q Open Tool Demonstration — December 2016

Software Repositories & Archives
Version Control

• CVS, Subversion, Git, …
• Rational ClearCase
• Perforce,
• Visual Source Safe
• …

Issue Tracking
• Bugzilla
• BugTracker.NET
• ClearQuest
• JIRA
• Mant
• Visual Studio Team Foundation

Server
• …

Automate the Build
• make
• Ant, Maven
• MSBuild
• OpenMake
• Build Forge
• …

Automated Testing
• HP QuickTest Professional
• IBM Rational Functional Tester
• Maveryx
• Selenium
• TestComplete
• Visual Studio Test Professional

 Microsoft 2010
• …

11

… mailing archives, newsgroups, chat-boxes, facebook, twitter, …

All of a sudden empirical research has
what any empirical science needs: a
large corpus of objects to analyze.

[Bertrand Meyer's technology blog]

CHa-Q Open Tool Demonstration — December 2016

Mining Software Repositories

12

Conferences
• 2017—14th edition, Buenos Aires, Argentina

• 2016—13th edition, Austin, Texas
• 2015—12th edition, Florence, Italy
• 2014—11th edition, Hyderabad, India
• 2013—10th edition, San Francisco, CA, USA
• 2012—9th edition, Zürich, CH
• 2011—8th edition, Honolulu, HI, USA
• 2010—7th edition, Cape Town, ZAF
• 2009—6th edition, Vancouver, CAN
• 2008—5th edition, Leipzig, DEU
• 2007—4th edition, Minneapolis, MN, USA
• 2006—3rd edition, Shanghai, CHN
• 2005—2nd edition, Saint Luis, MO, USA
• 2004—1st edition, Edinburgh, UK

The Mining Software Repositories (MSR) field analyzes the rich
data available in software repositories to uncover interesting and
actionable information about software systems and projects.

Hall of Fame—Mining Challenge
• 2017 — TravisTorrent (Github)
• 2016 — BOA (SourceForge & Github)
• 2015 — StackOverflow
• 2014—Sentiment Analysis of Commit

Messages in GitHub: An Empirical Study
• 2013—Encouraging User Behaviour with

Achievements: An Empirical Study
[StackOverflow]

• 2012—Do the Stars Align? Multidimensional
Analysis of Android's Layered Architecture

• 2011—Apples Vs. Oranges? An exploration of
the challenges of comparing the source code
of two software systems [Netbeans+Eclipse]

• 2010—Cloning and Copying between GNOME
Projects

• 2009—On the use of Internet Relay Chat
(IRC) meeting by developers of the GNOME
GTK+ project

• 2008—A newbie's guide to Eclipse APIs
• 2007—Mining Eclipse Developer Contributions

via Author-Topic Models
• 2006—A study of the contributors of

PostgreSQL

CHa-Q Open Tool Demonstration — December 2016

The Case of Firefox (1/2)

13

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact
of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software
Engineering, Springer. 
http://link.springer.com/article/10.1007/s10664-014-9308-x

CHa-Q Open Tool Demonstration — December 2016

The Case of Firefox (1/2)

13

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact
of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software
Engineering, Springer. 
http://link.springer.com/article/10.1007/s10664-014-9308-x

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

CHa-Q Open Tool Demonstration — December 2016

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact
of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software
Engineering, Springer. 
http://link.springer.com/article/10.1007/s10664-014-9308-x

The Case of Firefox (2/2)

14

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

We studied the following three research questions:
RQ1) Does the length of the release cycle affect the

software quality?
There is only a negligible difference in the number
of post-release bugs when we control for the time
interval between subsequent release dates. However,
the median uptime is significantly lower for versions
developed in short release cycles, i.e., failures seem
to occur faster at run-time.

RQ2) Does the length of the release cycle affect the fixing
of bugs?

Bugs are fixed significantly faster for versions devel-
oped in a rapid release model.

RQ3) Does the length of the release cycle affect software
updates?

Versions developed in a rapid release model are
adopted faster by customers, i.e., the proportion of
customers running outdated versions that possibly
contain closed security holes is reduced.

A better understanding of the impact of the release cycle
on software quality will help decision makers in software
companies to find the right balance between the delivery
speed (release cycle) of new features and the quality of their
software.

The rest of the paper is organized as follows. Section II
provides some background on Mozilla Firefox. Section III
describes the design of our study and Section IV discusses
the results. Section V discusses threats to the validity of our
study. Section VI discusses the related literature on release
cycles and software quality. Finally, Section VII concludes
the paper and outlines future work.

II. MOZILLA FIREFOX

Firefox is an open source web browser developed by the
Mozilla Corporation. It is currently the third most widely
used browser, with approximately 25% usage share world-
wide [7]. Firefox 1.0 was released in November 2004 and
the latest version, Firefox 9, was released on December 20,
2011. Figure 1(a) shows the release dates of major Firefox
versions. Firefox followed a traditional release model until
version 4.0 (March 2011). Afterwards, Firefox adopted a
rapid release model to speed up the delivery of its new
features. This was partly done to compete with Google
Chrome’s rapid release model [8], [9], which was eroding
Firefox’s user base. The next subsections discuss the Firefox
development and quality control processes.

A. Development Process
Before March 2011, FireFox supported multiple releases

in parallel, not only the last major release. Every version of
FireFox was followed by a series of minor versions, each
containing bug fixes or minor updates over the previous
version. These minor versions continued even after a new

5.0 NIGHTLY 6.0 NIGHTLY 7.0 NIGHTLY 8.0 NIGHTLY

5.0 AURORA 6.0 AURORA 7.0 AURORA

5.0 BETA 6.0 BETA

5.0 MAIN

New Feature Development

6 Weeks 6 Weeks 6 Weeks 6 Weeks

Figure 2. Development and Release Process of Mozilla Firefox

major release was made. Figure 1(b) shows the release dates
of the minor versions of Firefox.

With the advent of shorter release cycles in March 2011,
new features need to be tested and delivered to users faster.
To achieve this goal, Firefox changed its development pro-
cess. First, versions are no longer supported in parallel, i.e.,
a new version supersedes the previous ones. Second, every
FireFox version now flows through four release channels:
NIGHTLY, AURORA, BETA and MAIN. The versions
move from one channel to the next every 6 weeks [10].
To date, five major versions of Firefox (i.e., 5.0, 6.0, 7.0,
8.0, 9.0) have finished the new rapid release model.

Figure 2 illustrates the current development and release
process of Firefox. The NIGHTLY channel integrates new
features from the developers’ source code repositories as
soon as the features are ready. The AURORA channel
inherits new features from NIGHTLY at regular intervals
(i.e., every 6 weeks). The features that need more work are
disabled and left for the next import cycle into AURORA.
The BETA channel receives only new AURORA features
that are scheduled by management for the next Firefox
release. Finally, mature BETA features make it into MAIN.
Note that at any given time (independent from the 6 week
release schedule) unscheduled releases may be performed to
address critical security or stability issues.

Firefox basically follows a pipelined development pro-
cess. At the same time as the source code of one release
is imported from the NIGHTLY channel into the AURORA
channels, the source code of the next release is imported
into the NIGHTLY channel. Consequently, four consecutive
releases of Firefox migrate through Mozilla’s NIGHTLY,
AURORA, BETA, and MAIN channels at any given time.
Figure 2 illustrates this migration.

B. Quality Control Process

One of the main reasons for splitting Firefox’ develop-
ment process into pipelined channels is to enable incre-
mental quality control. As changes make their way through
the release process, each channel makes the source code
available for testing to a ten-fold larger group of users.
The estimated number of contributors and end users on the

CHa-Q Open Tool Demonstration — December 2016

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact
of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software
Engineering, Springer. 
http://link.springer.com/article/10.1007/s10664-014-9308-x

The Case of Firefox (2/2)

14

✓ bugs are fixed faster
(but … harder bugs propagated to later releases)

✓ amount of pre- & post-release bugs ± the same
✓ the program crashes earlier

(perhaps due to recent features)

1.0 1.5 2.0 3.0 3.5 3.6 4.0 5.0 7.0
8.0

9.0

Traditional Release Cycle Rapid Release Cycle

(a) Time Line of Major Versions of FireFox

(b) Time Line of Minor Versions of FireFox

Figure 1. Timeline of FireFox versions.

channels are respectively 100,000 for NIGHTLY, 1 million
for AURORA, 10 million for BETA and 100+ millions for
a major Firefox version [11]. NIGHTLY reaches Firefox
developers and contributors, while other channels (i.e., AU-
RORA and BETA) recruit external users for testing. The
source code on AURORA is tested by web developers who
are interested in the latest standards, and by Firefox add-on
developers who are willing to experiment with new browser
APIs. The BETA channel is tested by Firefox’s regular beta
testers.

Each version of Firefox in any channel embeds an auto-
mated crash reporting tool, i.e., the Mozilla Crash Reporter,
to monitor the quality of Firefox across all four channels.
Whenever Firefox crashes on a user’s machine, the Mozilla
Crash Reporter [12] collects information about the event
and sends a detailed crash report to the Socorro crash
report server. Such a crash-report includes the stack trace
of the failing thread and other information about a user
environment, such as the operating system, the version of
Firefox, the installation time, and a list of plug-ins installed.

Socorro groups similar crash-reports into crash-types.
These crash-types are then ranked by their frequency of
occurrence by the Mozilla quality assurance teams. For the
top crash-types, testers file bugs in Bugzilla and link them to
the corresponding crash-type in the Socorro server. Multiple
bugs can be filed for a single crash-type and multiple crash-
types can be associated with the same bug. For each crash-
type, the Socorro server provides a crash-type summary, i.e.,
a list of the crash-reports of the crash-type and a set of bugs
that have been filed for the crash-type.

Firefox users can also submit bug reports in Bugzilla
manually. A bug report contains detailed semantic infor-
mation about a bug, such as the bug open date, the last
modification date, and the bug status. The bugs are triaged

by bug triaging developers and assigned for fixing. When
a developer fixes a bug, he typically submits a patch to
Bugzilla. Once approved, the patch code is integrated into
the source code of Firefox on the corresponding channel and
migrated through the other channels for release. Bugs that
take too long to get fixed and hence miss a scheduled release
are picked up by the next release’s channel.

III. STUDY DESIGN

This section presents the design of our case study, which
aims to address the following three research questions:

1) Does the length of the release cycle affect the software
quality?

2) Does the length of the release cycle affect the fixing
of bugs?

3) Does the length of the release cycle affect software
updates?

A. Data Collection

In this study, we analyze all versions of Firefox that were
released in the period from January 01, 2010 to December
21, 2011. In total, we study 25 alpha versions, 25 beta
versions, 29 minor versions and 7 major versions that were
released within a period of one year before or after the
move to a rapid release model. Firefox 3.6, Firefox 4 and
their subsequent minor versions were developed following
a traditional release cycle with an average cycle time of
52 weeks between the major version releases and 4 weeks
between the minor version releases. Firefox 5, 6, 7, 8, 9
and their subsequent minor versions followed a rapid release
model with an average release time interval of 6 weeks
between the major releases and 2 weeks between the minor
releases. Table I shows additional descriptive statistics of the
different versions.

We studied the following three research questions:
RQ1) Does the length of the release cycle affect the

software quality?
There is only a negligible difference in the number
of post-release bugs when we control for the time
interval between subsequent release dates. However,
the median uptime is significantly lower for versions
developed in short release cycles, i.e., failures seem
to occur faster at run-time.

RQ2) Does the length of the release cycle affect the fixing
of bugs?

Bugs are fixed significantly faster for versions devel-
oped in a rapid release model.

RQ3) Does the length of the release cycle affect software
updates?

Versions developed in a rapid release model are
adopted faster by customers, i.e., the proportion of
customers running outdated versions that possibly
contain closed security holes is reduced.

A better understanding of the impact of the release cycle
on software quality will help decision makers in software
companies to find the right balance between the delivery
speed (release cycle) of new features and the quality of their
software.

The rest of the paper is organized as follows. Section II
provides some background on Mozilla Firefox. Section III
describes the design of our study and Section IV discusses
the results. Section V discusses threats to the validity of our
study. Section VI discusses the related literature on release
cycles and software quality. Finally, Section VII concludes
the paper and outlines future work.

II. MOZILLA FIREFOX

Firefox is an open source web browser developed by the
Mozilla Corporation. It is currently the third most widely
used browser, with approximately 25% usage share world-
wide [7]. Firefox 1.0 was released in November 2004 and
the latest version, Firefox 9, was released on December 20,
2011. Figure 1(a) shows the release dates of major Firefox
versions. Firefox followed a traditional release model until
version 4.0 (March 2011). Afterwards, Firefox adopted a
rapid release model to speed up the delivery of its new
features. This was partly done to compete with Google
Chrome’s rapid release model [8], [9], which was eroding
Firefox’s user base. The next subsections discuss the Firefox
development and quality control processes.

A. Development Process
Before March 2011, FireFox supported multiple releases

in parallel, not only the last major release. Every version of
FireFox was followed by a series of minor versions, each
containing bug fixes or minor updates over the previous
version. These minor versions continued even after a new

5.0 NIGHTLY 6.0 NIGHTLY 7.0 NIGHTLY 8.0 NIGHTLY

5.0 AURORA 6.0 AURORA 7.0 AURORA

5.0 BETA 6.0 BETA

5.0 MAIN

New Feature Development

6 Weeks 6 Weeks 6 Weeks 6 Weeks

Figure 2. Development and Release Process of Mozilla Firefox

major release was made. Figure 1(b) shows the release dates
of the minor versions of Firefox.

With the advent of shorter release cycles in March 2011,
new features need to be tested and delivered to users faster.
To achieve this goal, Firefox changed its development pro-
cess. First, versions are no longer supported in parallel, i.e.,
a new version supersedes the previous ones. Second, every
FireFox version now flows through four release channels:
NIGHTLY, AURORA, BETA and MAIN. The versions
move from one channel to the next every 6 weeks [10].
To date, five major versions of Firefox (i.e., 5.0, 6.0, 7.0,
8.0, 9.0) have finished the new rapid release model.

Figure 2 illustrates the current development and release
process of Firefox. The NIGHTLY channel integrates new
features from the developers’ source code repositories as
soon as the features are ready. The AURORA channel
inherits new features from NIGHTLY at regular intervals
(i.e., every 6 weeks). The features that need more work are
disabled and left for the next import cycle into AURORA.
The BETA channel receives only new AURORA features
that are scheduled by management for the next Firefox
release. Finally, mature BETA features make it into MAIN.
Note that at any given time (independent from the 6 week
release schedule) unscheduled releases may be performed to
address critical security or stability issues.

Firefox basically follows a pipelined development pro-
cess. At the same time as the source code of one release
is imported from the NIGHTLY channel into the AURORA
channels, the source code of the next release is imported
into the NIGHTLY channel. Consequently, four consecutive
releases of Firefox migrate through Mozilla’s NIGHTLY,
AURORA, BETA, and MAIN channels at any given time.
Figure 2 illustrates this migration.

B. Quality Control Process

One of the main reasons for splitting Firefox’ develop-
ment process into pipelined channels is to enable incre-
mental quality control. As changes make their way through
the release process, each channel makes the source code
available for testing to a ten-fold larger group of users.
The estimated number of contributors and end users on the

Space

 © Inspired by Margaret-Anne (Peggy) Storey; Keynote for MSR 2012, Zurich, Switzerland

Place

CHa-Q Open Tool Demonstration — December 2016

Hype Cycle

16

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Peak of
Inflated  

Expectations

Trough of 
Disillusionment

Slope of 
Enlightenment

Plateau of 
Productivity

CHa-Q Open Tool Demonstration — December 2016

The Future ?

17

Personal O
pinion

Peak of
Inflated  

Expectations

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Trough of 
Disillusionment

Slope of 
Enlightenment

Plateau of 
Productivity

CHa-Q Open Tool Demonstration — December 2016

The Future ?

17

Personal O
pinion

Peak of
Inflated  

Expectations

Hype Cycle © Gartner

V
is

ib
ili

ty

Maturity

Technology
Trigger

Trough of 
Disillusionment

Slope of 
Enlightenment

Plateau of 
Productivity

IBM (Patents) ⇒ Eclipse

Microsoft Research 
⇒ Team Foundation Server

HOW ?

Change
Database

Estimation

Testing

Repetitive
Edits

Traceability

Change
Database

CHa-Q Open Tool Demonstration — December 2016

Project Plan

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
WP0: Management
steering board 0.1.a 0.1.b 0.1.c 0.1.d 0.1.e 0.1.f 0.1.g 0.1.h
IWT reporting 0.2.a 0.2.b 0.2.c 0.2.d 0.2.e
WP1: State of the praxis versus state of the art
site visits 1.1.a 1.1.b
tools comparison 1.2.a 1.2.b
WP2: Analysing Change
meta-model 2.1.a 2.1.b [P] 2.1.c 2.2.c
distilling & logging 2.2.a [P] 2.2.b [P] 2.2.c
WP3: Repeating Changes
transformations 3.1.a 3.1.b [P]
change-aware 3.2.a [P] 3.2.b [P] 3.2.c
WP4: Tracing Changes
traceability links 4.1.a [P] 4.1.b
annotation 4.2.a [P] 4.2.b
WP5: Valorisation activities
pilot cases 5.1.a 5.1.b 5.1.c 5.1.d 5.1.e
dissemination evt. 5.2.a 5.2.b

m.n.x Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number
m.n.x [P] Deliverable m.n.x includes a prototype tool

Year 4Year 1 Year 2 Year 3

CHa-Q Open Tool Demonstration — December 2016

Project Plan

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
WP0: Management
steering board 0.1.a 0.1.b 0.1.c 0.1.d 0.1.e 0.1.f 0.1.g 0.1.h
IWT reporting 0.2.a 0.2.b 0.2.c 0.2.d 0.2.e
WP1: State of the praxis versus state of the art
site visits 1.1.a 1.1.b
tools comparison 1.2.a 1.2.b
WP2: Analysing Change
meta-model 2.1.a 2.1.b [P] 2.1.c 2.2.c
distilling & logging 2.2.a [P] 2.2.b [P] 2.2.c
WP3: Repeating Changes
transformations 3.1.a 3.1.b [P]
change-aware 3.2.a [P] 3.2.b [P] 3.2.c
WP4: Tracing Changes
traceability links 4.1.a [P] 4.1.b
annotation 4.2.a [P] 4.2.b
WP5: Valorisation activities
pilot cases 5.1.a 5.1.b 5.1.c 5.1.d 5.1.e
dissemination evt. 5.2.a 5.2.b

m.n.x Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number
m.n.x [P] Deliverable m.n.x includes a prototype tool

Year 4Year 1 Year 2 Year 3

Pilot Cases
Dissemination Event

Technology Readiness Level

join ?

CHa-Q Open Tool Demonstration — December 2016

• Idea. Unproven concept, no testing has been performed

• Basic research. Principles postulated and observed; no experimental proof available

• Technology formulation. Concept and application have been formulated

• Applied research. First laboratory tests completed; proof of concept

• Small scale prototype built in a laboratory environment (“ugly” prototype)

• Large scale prototype tested in intended environment

• Prototype system tested in intended environment close to expected performance

• Demonstration system operating in operational environment at pre-commercial scale

• First of a kind commercial system. Manufacturing issues solved

• Full commercial application, technology available for consumers.

TRL 0

TRL 1

TRL 2

TRL 3

TRL 4

TRL 5

TRL 6

TRL 7

TRL 8

TRL 9

Technology Readiness Level

22

CHa-Q Open Tool Demonstration — December 2016

• Idea. Unproven concept, no testing has been performed

• Basic research. Principles postulated and observed; no experimental proof available

• Technology formulation. Concept and application have been formulated

• Applied research. First laboratory tests completed; proof of concept

• Small scale prototype built in a laboratory environment (“ugly” prototype)

• Large scale prototype tested in intended environment

• Prototype system tested in intended environment close to expected performance

• Demonstration system operating in operational environment at pre-commercial scale

• First of a kind commercial system. Manufacturing issues solved

• Full commercial application, technology available for consumers.

TRL 0

TRL 1

TRL 2

TRL 3

TRL 4

TRL 5

TRL 6

TRL 7

TRL 8

TRL 9

Technology Readiness Level

22

CHAQ
powered by

CHAQ
powered by

Experiments

Pilot C
ases

To
ol

s
Academic

CHAQ
powered by

Experiments

Pilot C
ases

To
ol

s
Academic

Software
Intensive
Products

C
onsultants To

ol
 Ve

nd
or

s

Industrial

