

Lappy 386

#chaq16

CHA-Q

Change-centric quality Assurance

December 2016

Agenda

[12:30 - 13:00] — Registration

- [13:00 13:30] Welcome Prof. S. Demeyer (UA) and Prof. C. De Roover (VUB)
- [13:30 14:20] Pilot Studies on Cha-Q Technology for "Mining and Automating Past Changes" - Mining Git Repositories for Repeated Systematic Edits at TPVision - Reinout Stevens (VUB)
 - Automating Systematic Edits at FOD Financiën Tim Molderez (VUB)

[14:20 - 14:30] — Coffee break

[14:30 - 14:55] — Pilot Studies on Cha-Q Technology for "Monitoring Ongoing Changes"

- Maintaining Explicit Inter-Artefact Links at Inventive Designers Angela Lozano (VUB)
- [14:55 15:45] Pilot Studies on Cha-Q Technology for "History-Inspired Decision Making"
 - Exploiting Issue Tracker for Project Planning at Inventive Designers Murgia Alessandro (UA)
 - Strengthening the Regression Test Suite at HealthConnect Ali Parsai (UA)

[15:45 - 15:55] — Coffee break

[15:55 - 16:45] — Invited Talk

"What Software Analytics Can Do for Developers and Testers" Andy Zaidman (Delft University of Technology, The Netherlands)

[16:45 - 18:00] — Poster Reception and Networking Drink

Practical Arrangements

Practical Arrangements

Practical Arrangements

Program Issues

Non-Disclosure Agrees Non-Disclosure Agrees Non-Disclosure Agrees Non-Disclosure Agrees Non-Disclosure Agrees Non-Disclosure Agrees Non-Disclosure Agrees

Program Issues

<image>

Program Issues

Non-Disclosure Agreement

Technology Readiness Level

- TRL 0
- TRL 1
- TRL 2
- TRL 3
- TRL 4
- TRL 5
- TRL 6
- TRL 7

TRL 9

TRL 8

- Idea. Unproven concept, no testing has been performed
- Basic research. Principles postulated and observed; no experimental proof available
- Technology formulation. Concept and application have been formulated
- Applied research. First laboratory tests completed; proof of concept
- *Small scale prototype* built in a laboratory environment ("ugly" prototype)
- Large scale prototype tested in intended environment
- *Prototype system tested* in intended environment close to expected performance
- *Demonstration system* operating in operational environment at pre-commercial scale
- First of a kind commercial system. Manufacturing issues solved
- Full commercial application, technology available for consumers.

Technology Readiness Level

• Idea. Unproven concept, no testing has been performed TRL 0 Basic research. Principles postulated and observed; no experimental proof available TRL 1 Technology formulation. Concept and application have been formulated TRL² Applied research. First laboratory tests completed; proof of concept TRL 3 Small scale prototype built in a laboratory environment ("ugly" prototype) TRL 4 • Large scale prototype tested in intended environment TRL 5 • *Prototype system tested* in intended environment close to expected performance TRL 6 • Demonstration system operating in operational environment at pre-commercial scale TRI First of a kind commercial system. Manufacturing issues solved rrl 8 • Full commercial application, technology available for consumers. TRL 9

ICT EXPERTISE THAT CARES

BARCO

OMPARTNERS

AGENTSCHAP

ONDERNEMEN

Partners

Reliability vs. Agility

Software is vital to our society \Rightarrow Software must be reliable

Traditional Software Engineering Reliable = Software without bugs

Today's Software Engineering Reliable = Easy to Adapt

On the Origin of Species

Striving for RELIABILITY

(Optimise for *perfection*)

(Optimise for *development speed*)

Striving for

AGILITY

Continuous Integration / Deployment

Software Repositories & Archives

Version Control

- CVS, Subversion, Git, ...
- Rational ClearCase
- Perforce,
- Visual Source Safe
- ...

Automate the Build

- make
- Ant, Maven
- MSBuild
- OpenMake
- Build Forge
- ...

Issue Tracking

- Bugzilla
- BugTracker.NET
- ClearQuest
- JIRA
- Mant
- Visual Studio Team Foundation Server

Automated Testing

- HP QuickTest Professional
- IBM Rational Functional Tester
- Maveryx
- Selenium
- TestComplete
- Visual Studio Test Professional Microsoft 2010

• ...

... mailing archives, newsgroups, chat-boxes, facebook, twitter, ...

Software Repositories & Archives

Version Control

- CVS, Subversion, Git, ...
- Rational ClearCase
- Perforce,
- Visual Source Safe

Automate the Bui

- make
- Ant, Maven
- MSBuild
- OpenMake
- Build Forge

All of a sudden empirical research has what any empirical science needs: a large corpus of objects to analyze. [Bertrand Meyer's technology blog]

Issue Tracking

- Bugzilla
- BugTracker.NET
- ClearQuest
- JIRA
- Mant
- Visual Studio Team Foundation Server

Automated Testing

- HP QuickTest Professional
- IBM Rational Functional Tester
- Maveryx
- Selenium
- TestComplete
- Visual Studio Test Professional Microsoft 2010

• .

... mailing archives, newsgroups, chat-boxes, facebook, twitter, ...

Mining Software Repositories

The Mining Software Repositories (MSR) field analyzes the rich data available in software repositories to uncover interesting and actionable information about software systems and projects.

2017 — TravisTorrent (Github) 2016 — DOA (Grant France)

- 2016 BOA (SourceForge & Github)
- 2015 StackOverflow

Hall of Fame—Mining Challenge

- 2014—Sentiment Analysis of Commit Messages in *GitHub*: An Empirical Study
- 2013—Encouraging User Behaviour with Achievements: An Empirical Study [StackOverflow]
- 2012—Do the Stars Align? Multidimensional Analysis of Android's Layered Architecture
- 2011—Apples Vs. Oranges? An exploration of the challenges of comparing the source code of two software systems [Netbeans+Eclipse]
- 2010—Cloning and Copying between GNOME Projects
- 2009—On the use of Internet Relay Chat (IRC) meeting by developers of the GNOME GTK+ project
- 2008—A newbie's guide to *Eclipse* APIs
- 2007—Mining *Eclipse* Developer Contributions via Author-Topic Models
- 2006—A study of the contributors of *PostgreSQL*

Conferences

- 2017—14th edition, Buenos Aires, Argentina
- 2016—13th edition, Austin, Texas
- 2015—12th edition, Florence, Italy
- 2014—11th edition, Hyderabad, India
- 2013—10th edition, San Francisco, CA, USA
- 2012—9th edition, Zürich, CH
- 2011—8th edition, Honolulu, HI, USA
- 2010-7th edition, Cape Town, ZAF
- 2009—6th edition, Vancouver, CAN
- 2008-5th edition, Leipzig, DEU
- 2007—4th edition, Minneapolis, MN, USA
- 2006—3rd edition, Shanghai, CHN
- 2005—2nd edition, Saint Luis, MO, USA
- 2004—1st edition, Edinburgh, UK

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software Engineering, Springer. http://link.springer.com/article/10.1007/s10664-014-9308-x

The Case of Firefox (1/2)

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software Engineering, Springer. http://link.springer.com/article/10.1007/s10664-014-9308-x

[Khom2014] Khomh, F. Adams, B, Dhaliwal, T and Zou, Y Understanding the Impact of Rapid Releases on Software Quality: The Case of Firefox, Empirical Software Engineering, Springer.

http://link.springer.com/article/10.1007/s10664-014-9308-x

- (but ... harder bugs propagated to later releases)
- \checkmark amount of pre- & post-release bugs ± the same
- the program crashes earlier
 - (perhaps due to recent features)

CHa-Q Open Tool Demonstration — December 2016

CHa-Q Open Tool Demonstration — December 2016

CHa-Q Open Tool Demonstration — December 2016

Change Database

Repetitive

All work and so play makes Jack s doll buy All work and no play makes Jack s doll buy All work and no play makes Jack s doll buy All work and no play makes Jack s doll buy All work and no play makes Jack s doll buy

Change Database

Estimation

Testing

Project Plan

	Year 1				Year 2					Yea	r 3		Year 4			
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
WP0: Management																
steering board	0.1.a			0.1.b		0.1.c	;	0.1.d		0.1.e		0.1.f		0.1.g		0.1.h
IWT reporting	0.2.a			0.2.b				0.2.c				0.2.d				0.2.e
WP1: State of the p	raxis vers	us state o	f the art													
site visits	1.1.a								1.1.b							
tools comparison		1.2.a								1.2.b						
WP2: Analysing Ch	ange															
meta-model	2.1.a	2.1.b [P]												2.1.c		2.2.c
distilling & logging			2	2.2.a [P]			2.2.b [P]									2.2.c
WP3: Repeating Ch	anges															
transformations			3.1.a		3.1.b [P]									_		
change-aware						3.2.a [P]						3.2.b [P]				3.2.c
WP4: Tracing Chan	ges															
traceability links						4.1.a [P]										4.1.b
annotation							4.2.a [P]									4.2.b
WP5: Valorisation a	activities															
pilot cases					5.1.a			5.1.b			5.1.c			5.1.d		5.1.e
dissemination evt.								5.2.a								5.2.b

Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number

Deliverable m.n.x includes a prototype tool

Project Plan

	Year 1				Year 2					Year	3		Year 4			
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
WP0: Management																
steering board	0.1.a			0.1.b		0.1.c		0.1.d		0.1.e		0.1.f		0.1.g		0.1.h
IWT reporting	0.2.a			0.2.b				0.2.c				0.2.d				0.2.e
WP1: State of the p	raxis versu	is state of	the art													
site visits	1.1.a								1.1.b							
tools comparison		1.2.a								1.2.b						
WP2: Analysing Ch	ange															
meta-model	2.1.a 2	.1.b [P]												2.1.c		2.2.c
distilling & logging			2	2.2.a [P]			2.2.b [P]									2.2.c
WP3: Repeating Ch	anges															
transformations			3.1.a		3.1.b [P]									_		
change-aware						3.2.a [P]						3.2.b [P]				3.2.c
WP4: Tracing Chan	ges															
traceability links					4	I.1.a [P]										4.1.b
annotation							4 2 a [P]							-		4.2 b
WP5: Valorisation a	ctivities															
pilot cases					5.1.a			5.1.b			5.1.c			5.1.d		5.1.e
dissemination evt.								5.2.a								5.2.b

m.n.x m.n.x [P] Deliverable m.n.x is due at end of quarter. m = work-package; n = activity; x = sequence number

Deliverable m.n.x includes a prototype tool

Pilot Cases Dissemination Event

Technology Readiness Level

• Idea. Unproven concept, no testing has been performed TRL 0 • Basic research. Principles postulated and observed; no experimental proof available TRL 1 Technology formulation. Concept and application have been formulated TRL² Applied research. First laboratory tests completed; proof of concept TRL 3 Small scale prototype built in a laboratory environment ("ugly" prototype) TRL 4 • Large scale prototype tested in intended environment TRL 5 • *Prototype system tested* in intended environment close to expected performance TRL 6 • Demonstration system operating in operational environment at pre-commercial scale TRI First of a kind commercial system. Manufacturing issues solved rrl 8 • Full commercial application, technology available for consumers. TRL 9

Technology Readiness Level

• Idea. Unproven concept, no testing has been performed TRL 0 Basic research. Principles postulated and observed; no experimental proof available TRL 1 • Technology formulation. Concept and application have been formulated TRL² • Applied research. First laboratory tests completed; proof of concept TRL 3 Small scale prototype built in a laboratory environment ("ugly" prototype) TRL 4 Large scale prototype tested in intended environment TRL 5 Prototype system tested in intended environment close to expected performance TRL 6 • Demonstration system operating in operational environment at pre-commercial scale TRL • First of a kind commercial system. Manufacturing issues solved TRL 8 Full commercial application, technology available for consumers. TRL 9

