
How should context-escaping closures proceed?

Dave Clarke ∗

DistriNet
Katholieke Universiteit Leuven

B-3001 Heverlee, Belgium
dave.clarke@cs.kuleuven.be

Pascal Costanza †

Programming Technology Lab
Vrije Universitiet Brussel
B-1050 Brussels, Belgium
pascal.costanza@vub.ac.be

Éric Tanter ‡

PLEIAD Laboratory
Computer Science Dept (DCC)

University of Chile, Santiago, Chile
etanter@dcc.uchile.cl

Abstract
Context-oriented programming treats execution context ex-
plicitly and provides means for context-dependent adapta-
tion at runtime. This is achieved, for example, using dynamic
layer activation and contextual dispatch, where the context
consists of a layer environment of a stack of active layers.
Layers can adapt existing behaviour using proceed to ac-
cess earlier activated layers. A problem arises when a call to
proceed is made from within a closure that escapes the layer
environment in which it was defined. It is not clear how to
interpret proceed when the closure is subsequently applied
in a different environment, because the layers it implicitly
refers to (such as the original layer and/or the remaining lay-
ers) may no longer be active. In this paper, we describe this
problem in detail and present some approaches for dealing
with it, though ultimately we leave the question open.

1. Introduction
An approach to context-oriented programming as embodied
by ContextL and others [4] enables programmers to dynam-
ically adapt or replace code at run-time by activating layers
which intercept dispatched methods. Code is organised into
modules called layers which cross-cut existing classes. Pre-
viously activated methods can be invoked using a command
proceed, and thus layers can be used to implement a variant
of before, after, and around advice. proceed provides del-
egation within the stack of layers, analogous to super calls
in object-oriented languages, ‘proceed’ in aspect languages,

∗Author partially funded by the EU project IST-231620 HATS: Highly
Adaptable and Trustworthy Software using Formal Methods (http://
hats-project.eu).
†Author partially funded by the Research Foundation – Flanders (FWO).
‡Author partially funded by FONDECYT projects 11060493 and 1090083.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
COP’09 July 7, 2009, Genova, Italy
Copyright c© 2009 ACM 978-1-60558-538-3/09/07. . . $10.00

or delegation in general, in that proceed goes through the
remaining layers, though new method invocations go to the
most recently activated layer.

The structure of the layer environment changes dynami-
cally as layers are activated and deactivated. This can cause
problems in higher-order languages, because a closure con-
taining a call to proceed can escape the layer environment
in which it originates (and makes sense) and be applied in
a new layer environment. It is unclear what proceed means,
nor what it should mean, in the new environment.

1.1 The proceed Problem
So far, there seem to be two basic approaches for provid-
ing semantics for proceed, and in the following we use Con-
textJ* and ContextL as two representative context-oriented
languages to illustrate the two approaches.

ContextJ* [4], which is based on Java, implements its ex-
tension of method dispatch as a search through the current
stack of active layers. This suggests that proceed is the con-
tinuation of a search. Currently, this is not a problem be-
cause like Java, ContextJ* does not have first-class closures.1

Therefore, this search can always continue in the current
layer environment, at the position in the stack of active layers
where it found the currently executing method. However, if
ContextJ* had closures, and invocations of proceed could be
captured in such closures, these semantics suggest that the
search has to continue in an as-yet unspecified stack of lay-
ers, and it is unclear which layers to use: the original layers,
the currently active layers, or some combination thereof.

ContextL [3] is based on Common Lisp, which provides
lexical closures. However, in contrast to ContextJ*, an invo-
cation of proceed2 is not the continuation of a search, due
to the semantics of generic functions in the Common Lisp
Object System (CLOS, [1]), on which ContextL is based.
Generic function invocation, CLOS’s equivalent to object-
oriented message sending, is performed in three steps:3

1 Java’s recent incarnation of closure-like constructs are still not closures.
2 In CLOS, proceed is actually call-next-method.
3 We have simplified the actual semantics somewhat for clarity here.

1. A set of applicable methods is determined, based on
the classes the candidate methods are defined for. (In
ContextL, the current stack of active layers is also taken
into account in this step.)

2. The set of applicable methods is sorted according to
specificity. (In ContextL, more recently activated layers
render their methods more specific.)

3. The most specific method is invoked, and each method
can invoke proceed to call the next most specific method.

The intuition here is that proceed merely navigates through
a precomputed, ordered set of applicable methods, just like
super calls in other object-oriented languages merely invoke
methods in the statically determined direct superclass. A
change in the current stack of active layers does not affect
this set of applicable methods anymore: Once it is deter-
mined, it will remain fixed. This gives a reasonable seman-
tics for proceed, even when captured in closures.

However, the fact that ContextL seems to have reasonable
semantics here is actually an accident, due to the reuse of
CLOS semantics. In fact, ContextL still fails to reinstate the
original stack of active layers when proceed is invoked. So
neither the layers that invoked the method in which proceed
was captured, nor the layers that provide the definitions of
the methods that will be invoked by proceed, may actually be
active when that proceed is eventually executed. However,
especially the already executed definitions may rely on the
presence of their own layers in such a situation.

1.2 How to proceed?
To summarize, this paper tries to pose, and partially answer,
the following questions:

• Should the invocation of a proceed find a method either
in the stack of layers that was active when it was captured
in a closure, in the stack of currently active layers, or in a
combination thereof?
• Should the method found by proceed then be executed in

a dynamic environment with the original stack of layers,
with the current stack of layers, or a combination thereof?
• If the layer environments should be combined in these

cases, what should the composition look like?

We also briefly discuss ideas for advanced language con-
structs to influence the composition of layer environments.

2. A Small COP Language
In order to precisely describe the problem and potential
solutions, we adopt the formal calculus Contextλ developed
by Clarke and Sergey [2], which derives from the semantics
of dynamic binding [5, 6]. Contextλ extends the lambda
calculus with layer definitions, layer activation (with(l)e)
and deactivation (without(l)e), and contextual dispatch. As
layer deactivation is not required for our story, we remove
without, resulting in a considerably simpler calculus, which

we call Contextλ−. Its syntax is as follows:

P ::= ∆; e
∆ ::= l = B

B ::= p = e

v ::= λx.e | x
e ::= v | p | e e | with(l)e

E[] ::= [] | E[[] e] | E[v []] | E[with(l)[]]

A program P consists of a collection of layers ∆ followed by
a single expression e. Each layer is a mapping from the layer
name l to a set of bindings of parameters p to expressions
e. Values v—the results of successful reductions—consist
of lambda abstractions and variables. In closed expressions,
the only values are lambda abstractions λx.e, though for
examples we also use integers.

Expressions e consist of values v, parameters p, func-
tion application e e, and context activation with(l)e. Param-
eters p are dynamically scoped and dynamically bound to a
definition in some layer—called contextual dispatch or just
dispatch. Variables, however, are lexically scoped. The con-
struct with(l)e activates layer l for the (dynamic) duration of
the reduction of expression e, i.e., until e reduces to a value.

Finally, E[] gives the syntax of evaluation contexts,
which are expressions with a single hole. E can be seen as
holding the context surrounding an expression, in particular,
it contains a stack of with(l) expressions denoting the acti-
vated layers. For example, E[] = with(l1)(with(l2)([] e)))
can be seen as the stack of layers l1 : l2, where l2 is the in-
nermost layer. Dispatch operates by searching for a binding
of a parameter moving outwards from the innermost layer.
This stack of layers is called the layer environment.

The reduction rules use the following function to deter-
mine the set of parameters active in the layer environment,
so which layer to dispatch to for a particular parameter:

Bound parameters.

BP([]) = ∅
BP(E[[] e]) = BP(E)
BP(E[v []]) = BP(E)

BP(E[with(l)[]]) = BP(E) ∪ dom(∆(l))

The reduction rules for Contextλ− are as follows:

Semantics.
E[(λx.e) v] → E[e{v/x}] (β)
E[with(l)v] → E[v] (ESC)

E[with(l)E′[p]] → E[with(l)E′[e]] (DISP)
if p /∈ BP(E′)
and e = ∆(l)(p)

Evaluation is call-by-value. The first rule is the standard β-
reduction rule. We use e{e′

/x} to denote the substitution of
x for e′ in e. The second rule states that when an expression

finishes evaluating, the surrounding layer activation has no
further effect and is removed. The third rule covers the case
of looking up a parameter in some surrounding layer. Here
E′[] is the (inner) part of the evaluation context which
does not contain a binding for parameter p, denoted by
p /∈ BP(E′). Thus, l is the first layer, from inside to outside,
containing a binding for p.

A program P = ∆; e evaluates by evaluating e, where ∆
provides the layers.

3. The Problem
The question we wish to raise and study here is what hap-
pens when proceed is added to Contextλ−. The intention of
proceed is to delegate the parameter dispatch to the next sur-
rounding layer. When combined with closures, proceed may
be invoked in the body of a closure that has escaped from
its definition context and is applied in another layer environ-
ment. It is then not clear which layer proceed refers to.4

Following is an informal account of how proceed be-
haves, firstly when no closures are present, and then we indi-
cate what the potential problem is when closures are present.

Let

∆0 =
{
l1 = {p = 10},
l2 = {p = proceed + 5}

}

The next example illustrates how proceed works, in this
case by marking proceed to indicate which parameter to
dispatch to, and which layer to begin the search (we use
with(l1, l2, l3)[] to denote with(l1)with(l2)with(l3)[]):

with(l1, l2)(p+ 3) Binding for p found in l2.
Mark proceed to indicate
where to continue search.

→ with(l1, l2)((proceedl1,p + 5) + 3){

Binding for p found in l1
}

→ with(l1, l2)((10 + 5) + 3)
→∗ 18

This naı̈ve approach falls over when a closure containing
a call to proceed escapes the layer environment in which it
was created. In this example we use:

∆1 =

 l1 = {p = λx.1}
l2 = {p = λx.proceed x}
l3 = {p = λx.3}

 .

4 Note that although Clarke & Sergey present two languages—Contextλ
with layers and closures, but not proceed; and ContextFJ with layers,
classes and proceed, but no closures [2]—they do not consider this issue.

(λf.with(l3)(f 10)) (with(l1, l2)p) Binding for p found in l2.
Mark proceed to indicate
where to continue search.

→ (λf.with(l3)(f 10)) (with(l1, l2)(λx.proceedl1,p x)
→∗ (λf.with(l3)(f 10)) (λx.proceedl1,p x)
→ with(l3)((λx.proceedl1,p x) 10)
→ with(l3)(proceedl1,p 10){

Cannot find layer l1 to begin search.
}

→ ???

This naı̈ve approach of recording where to continue the
search fails, when the search continues in a new layer envi-
ronment. In addition, if the layer l1 had been present in the
environment, this could be purely coincidental.

4. Semantics of proceed

We now present a few approaches to giving semantics to
proceed. Without closures, they are all equivalent. For our
example with ∆0, the same program always reduces to 18.
They do however differ when involving escaping closures.

4.1 Capture and Reinstate Layer Environment
In this semantics, whenever a parameter is dispatched the
layer environment above the layer in which the binding is
found is captured; proceed is replaced by a call to p in the
captured layer environment. The reduction rule is:

E[with(l)E′[p]] → E[with(l)E′[e{E[p]/proceed}]]
if p /∈ BP(E′) and e = ∆(l)(p)

(DISP2)

where E[], which extracts the surrounding layer environ-
ment from an evaluation context, is defined as:

[] = []

E[[] e] = E[]

E[v []] = E[]

E[with(l)[]] = E[with(l)[]]

The following example reduction is in the context of ∆1:

(λf.with(l3)(f 10)) with(l1, l2)p{
Binding for p found in l2

}
→ (λf.with(l3)(f 10))

with(l1, l2)((λx.proceed x){with(l1)p/proceed})
= (λf.with(l3)(f 10)) with(l1, l2)(λx.with(l1)p x)
→∗ (λf.with(l3)(f 10)) (λx.with(l1)p x)
→ with(l3)((λx.with(l1)p x) 10)
→ with(l3)(with(l1)p 10) {

Binding for p found in l1
}

→ with(l3)(with(l1)((λx.1){p/proceed}) 10)
= with(l3)(with(l1)(λx.1) 10)
→ with(l3)((λx.1) 10)
→ with(l3)1
→ 1

Here, whenever proceed dispatches to another parame-
ter, the context in which the evaluation occurs is (part of) the
original, not the new context. So the parameter is not dynam-
ically bound in the new context. For example, given layers:

∆2 =

 l1 = {p = q, q = λx.4}
l2 = {p = λx.proceed x}
l3 = {p = λx.3, q = λx.5}

 .

the following reduction sequence illustrates that the environ-
ment associated with proceed remains longer than expected:

(λf.with(l3)(f 10)) with(l1, l2)p{
Binding for p found in l2

}
→ (λf.with(l3)(f 10))

with(l1, l2)((λx.proceed x){with(l1)p/proceed})
= (λf.with(l3)(f 10)) with(l1, l2)(λx.with(l1)p x)
→∗ (λf.with(l3)(f 10)) (λx.with(l1)p x)
→ with(l3)((λx.with(l1)p x) 10)
→ with(l3)(with(l1)p 10) {

Binding for p found in l1
}

→ with(l3)(with(l1)(q{with(l3)p/proceed}) 10)
= with(l3)(with(l1)q 10) {

Binding for q found in l1
}

→ with(l3)(with(l1)((λx.4){with(l3)q/proceed}) 10)
= with(l3)(with(l1)(λx.4) 10)
→∗ 4

This may be considered wrong, because parameters are
by definition dynamically scoped, so one should always use
the most recent binding. So q should dispatch to layer l3. Al-
ternatively, as the layer environment of the original dispatch
was with(l1, l2), perhaps q should dispatch to l1.

4.2 Capture Layer Environment and Use It to
Interpret proceed: Variant I

In this semantics, we capture the layer environment to in-
terpret proceed, but do not reinstate the environment. In this
semantics, when a parameter p is called in environment E0,
proceed is replaced by a term pE0 recording this informa-
tion. Term pE0 is evaluated in environment E by finding an
appropriate binding in environment E[E0[]], and then con-
tinuing evaluation in E[]. (In comparison, the previous se-
mantics would continue in environment E[E0[]])

To model this, we add the following term to the language,
and note that an ordinary parameter is modelled by p[]:

e ::= · · · | pE

The modified rule for parameter dispatch is:

E[pE0] → E[e{pE1 /proceed}]
if E[E0[]] ≡ E1[with(l)E2[]],
p /∈ BP(E2) and e = ∆(l)(p)

(DISP3)

Firstly, the environment E[] is extended with E0[]. An
appropriate layer l is found containing parameter p. In the
binding of p in l, proceed is interpreted as pE1 , where E1 is
the remaining layer environment, above layer l.

We now redo the previous examples. Firstly with ∆1:

(λf.with(l3)(f 10)) with(l1, l2)p{
Binding for p found in layer l2 of with(l1, l2)[].

}
→ (λf.with(l3)(f 10))

with(l1, l2)((λx.proceed x){pwith(l1)[]/proceed})
= (λf.with(l3)(f 10)) with(l1, l2)(λx.pwith(l1)[] x)
→ (λf.with(l3)(f 10)) (λx.pwith(l1)[] x)
→ with(l3)((λx.pwith(l1)[] x) 10)
→ with(l3)(pwith(l1)[] 10){

Binding for p found in layer l1 of with(l3, l1)[].
}

→ with(l3)((λx.1){pwith(l3)/proceed} 10)
= with(l3)((λx.1) 10)
→∗ 1

The following example, with layers ∆2, shows that this
approach differs from the previous one:

(λf.with(l3)(f 10)) with(l1, l2)p
→ (λf.with(l3)(f 10)) with(l1, l2)(λx.pwith(l1)[] x)
→∗ (λf.with(l3)(f 10)) λx.pwith(l1)[] x)
→ with(l3)((λx.pwith(l1)[] x) 10)
→ with(l3)(pwith(l1)[] 10)
→ with(l3)(q 10){

Binding for q found in layer l3 of with(l3)[].
}

→ with(l3)((λx.5) 10)
→∗ 5

This shows that with this approach, parameters are now
(correctly) dynamically scoped.

4.3 Capture Layer Environment and Use It to
Interpret proceed: Variant II

The approach above performs the search in the current layer
environment augmented with the captured layers. Another
variant performs the search exclusively in the original layer
environment. Thus we would have the two rules:

E[with(l)E′[p]] → E[with(l)E′[e{pE/proceed}]]
if p /∈ BP(E′) and e = ∆(l)(p)

(DISP4A)
E[pE0] → E[e{pE2/proceed}]

if E0[] ≡ E2[with(l)E3[]],
p /∈ BP(E3) and e = ∆(l)(p)

(DISP4B)

The first rule describes the initial dispatch to a param-
eter. The second rule describes dispatch corresponding to
proceed. The environment in which the search is performed
isE0[], rather thanE[E0[]]. For our example, the results are
the same as above.

4.4 Build Composite Expression
In this approach, when a parameter is dispatched, the entire
expression to which it corresponds, with all the proceed calls
expanded in place, is computed:5

E[p] → E[build(p,E)]
(DISP5)

build(p, []) = error

build(p,with(l, l0)) =

e{build(p,with(l))/proceed}

if e = ∆(l0)(p)
build(p,with(l))

otherwise

This approach is illustrated using layers ∆2:

(λf.with(l3)(f 10)) with(l1, l2)p
build(p,with(l1, l2))

= (λx.proceed x){build(p,with(l1))/proceed}
= (λx.proceed x){q/proceed}
= (λx.q x)

→ (λf.with(l3)(f 10)) with(l1, l2)(λx.q x)
→ (λf.with(l3)(f 10)) (λx.q x)
→ with(l3)((λx.q x) 10)
→ with(l3)(q 10){

build(q,with(l3)) = λx.5
}

→ with(l3)((λx.5) 10)
→∗ 5

This approach is actually semantically the same as the ap-
proach in Section 4.3 (we conjecture). They differ in the way
they perform the computation. One approach (§ 4.3) per-
forms the computation of the ‘generic function’ on-the-fly,
by reusing the previously saved layer to perform dispatch.
The other (§ 4.4) determines the complete generic function
whenever dispatching to a parameter. This second approach
corresponds to the precomputation of applicable methods in
generic functions in CLOS, and hence ContextL.

4.5 Discussion
Table 1 summarizes the different approaches described un-
til now. For each proposal, the layer environment in which
the lookup of a binding is performed is specified (Elook), as
well as the layer environment in which execution continues
(Eeval). As before,E0 refers to the remaining definition-time
layer environment above the layer where proceed was cap-
tured, and E is the current layer environment. Also, E0,full

is the complete definition-time layer environment, including
the layers below and the layer where proceed was captured.

From this table, we can rule out several approaches that
have clear drawbacks. Looking up the binding in the cur-
rent environment E[] is unsatisfactory because it may fail
to find an appropriate layer. Also, continuing evaluation in
an environment where the definition-time layer environment
is at the bottom, such as E[E0[]] (4.1), destroys dynamic

5 This is similar to linearization of class hierarchies in, for example, Scala.

binding of parameters, by allowing definition-time bindings
to shadow the currently-active ones. Using simply E0[] or
E0,full[]6 to continue in would be similarly wrong, since cur-
rent dynamic bindings would not be available at all. How-
ever, E0,full[E[]] seems to be a reasonable choice for con-
tinuing evaluation, since both dynamic binding of parame-
ters is respected and the definition-time layer environment
is present to fulfil the expectations of original definitions.

For lookup, we have three remaining possibilities:

• E0[] lookup can fail even though a parameter binding is
available in the current layer environment. This seems to
contradict the purpose of dynamically-activated layers.
• E0[E[]]7 A binding in the current layer environment can

shadow a binding in the definition-time environment.
• E[E0[]] A binding in the definition-time environment

shadows bindings in the current environment.

It is obvious that E0[] should be present, but we currently
do not agree whether or how E[] should be included.

5. Obtaining More Control
The previous strategies are meant to be possible defaults: the
same semantics for all lambdas and for all layers. First the
appropriate layer is found in an environment Elook, then the
evaluation is continued in environment Eeval.

It is also possible to give programmers more fine-grained
control. For instance, at the lambda level, we can distinguish
between a lambda that captures E0 and one which does not
(resulting in E0 = []). We explore this in Section 5.1.
In Section 5.2 we explore the dual approach, where fine-
grained control is given at the layer level: we can specify that
some layers stick to an escaping closure (and are therefore
part of E0) so that they are reinstated when the closure is
applied, whereas others do not.

5.1 Control at the Lambda Level
Here, we annotate λ-abstractions to indicate whether or not
they capture the layer environment they escape. Assume that
λ◦ denotes the λ which does not capture its context and λ•

be the λ which does. We have the following rules:

E[with(l)λ◦x.e] → E[λ◦x.e] (ESC-◦)
E[with(l)λ•x.e] → E[λ•x.with(l)e] (ESC-•)

The same β-reduction rule applies to both λs.
λ◦ behaves as before, discarding the surrounding layer

activations. λ• behaves differently, wrapping the body of the
λ-abstraction with the layer environment, so that when the λ-
abstraction is applied, the captured layers will be reactivated.

6 Both not described in this paper.
7 Not described in this paper.

Proposal Elook Eeval Comments
Naı̈ve E[] E[] May fail to find appropriate layer (see Section 3)

4.1 E[E0[]] E[E0[]] Sacrifices dynamic binding of parameters
4.2 E[E0[]] E[] Dynamic binding is back
4.3 E0[] E[] Same as previous, though lookup fails even if current environment has a binding
4.4 E0[] E[] Same as previous, though generic function is computed when called

Table 1. Comparison of Approaches: Elook is where the lookup of a binding is performed, and Eeval is where the execution
continues. E0 is the environment in which the closure containing proceed was defined and E is the current layer environment.

Let

∆3 =

 l1 = {p = q, q = λ◦x.4}
l2 = {p = λ•x.proceed x}
l3 = {p = λ◦x.3, q = λ◦x.5}

 .

Now, adapting the example above:

(λ◦f.with(l3)(f 10)) with(l1, l2)p
→ (λ◦f.with(l3)(f 10)) with(l1, l2)(λ•x.q x)
→∗ (λ◦f.with(l3)(f 10)) (λ•x.with(l1, l2)(q x))
→ with(l3)((λ•x.with(l1, l2)(q x)) 10)
→ with(l3, l1, l2)(q 10){

build(q,with(l3, l1, l2)) = λ◦x.4
}

→ with(l3)((λ◦x.4) 10)
→ with(l3)4
→∗ 4

5.2 Control at the Layer Level
Inspired by the work of Tanter on expressive scoping of as-
pects [7], we can consider (at least) two kinds of layer acti-
vations: a fluid activation such that a layer does not stick to
closures, and a sticky activation such that a layer is captured
in the definition-time layer environment of a closure (E0[]).

E[with-fluid(l)λx.e] → E[λx.e] (ESCFL)
E[with-sticky(l)λx.e] → E[λx.with-sticky(l)e] (ESCST)

Assume that we are using layers ∆2 and the final seman-
tics presented in the last section. Then:

(λf.with-fluid(l3)(f 10))
with-sticky(l1)with-fluid(l2)p

→ (λf.with-fluid(l3)(f 10))
with-sticky(l1)with-fluid(l2)(λx.q x)

→ (λf.with-fluid(l3)(f 10)) with-sticky(l1)(λx.q x)
→ (λf.with-fluid(l3)(f 10)) (λx.with-sticky(l1)(q x))
→ with-fluid(l3)((λx.with-sticky(l1)(q x)) 10)
→ with-fluid(l3)with-sticky(l1)(q 10){

build(q,with(l3, l1)) = λx.4
}

→ with-fluid(l3)((λx.4) 10)
→ with-fluid(l3)4
→ 4

6. Conclusion
We argued that it is not clear how to give semantics to
a closure containing a call to proceed which subsequently
escapes its defining layer environment. We offer a number of
possible solutions to this problem, along with mechanisms
for better handling the layer environment associated with
an escaping closure. By exploring various possibilities, we
want to offer programmers both a predictable semantics so
that they can reason about their code, and flexibility so that
they can design the code to do exactly what they want it to.
We offer no definitive answer. Furthermore, we conjecture
that delimited dynamic bindings [5] will provide even more
flexibility.

References
[1] Daniel Bobrow, Linda DeMichiel, Richard Gabriel, Sonya

Keene, Gregor Kiczales, and David Moon. Common Lisp
Object System Specification. Lisp and Symbolic Computation,
1(3-4):245–394, 1989.

[2] Dave Clarke and Ilya Sergey. A Semantics for Context-oriented
Programming with Layers. Submitted to COP2009, April
2009.

[3] Pascal Costanza and Robert Hirschfeld. Language Constructs
for Context-oriented Programming. In ACM Dynamic
Languages Symposium 2005. ACM Press, 2005.

[4] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
Context-oriented Programming. Journal of Object Technology,
March/April 2008.

[5] Oleg Kiselyov, Chung chieh Shan, and Amr Sabry. Delimited
Dynamic Binding. In International Conference on Functional
Programming (ICFP), volume 41 of SIGPLAN Notices, pages
26–37. ACM, 2006.

[6] Luc Moreau. A Syntactic Theory of Dynamic Binding. Higher-
Order and Symbolic Computation, 11(3):233–279, 1998.

[7] Éric Tanter. Expressive scoping of dynamically-deployed
aspects. In Proceedings of the 7th ACM International
Conference on Aspect-Oriented Software Development (AOSD
2008), pages 168–179, Brussels, Belgium, April 2008.

