
Declarative Definition of Contexts with Polymorphic Events

Angel Núñez and Jacques Noyé
École des Mines de Nantes

ASCOLA Research Group (EMN-INRIA, LINA)
{angel.nunez, jacques.noye}@emn.fr

Vaidas Gasiūnas
Technische Universität Darmstadt

gasiunas@informatik.tu-darmstadt.de

ABSTRACT
This paper introduces a new model of event handling com-
bining explicitly triggered events with events intercepted
with aspect-oriented features. The model supports event
abstraction, polymorphic references to events, and declara-
tive definition of events as expressions involving references to
events from other objects. We show that this model makes
it easy to define a declarative and compositional notion of
event-based context. We illustrate these ideas with exam-
ples in ECaesarJ, a language with concrete support for our
model, and relate the events of ECaesarJ to other event-
handling and context-handling models.

1. INTRODUCTION
A context-aware application is an application that is able

to adapt its behavior in order to best meet its users’ need.
It does so by taking into account context information, i.e.,
any piece of information relevant to the interaction between
a user and an application [3]. This typically includes infor-
mation on the physical environment (e.g., noise level, time
of day, location, computer resources) as well as the social
environment of the user (e.g., nearby people, previous inter-
actions, objectives, mood).

The behavior of context-aware applications depends on
the environment context. Programming such applications in
a modular way requires modularization of the global context
into more specific contexts and attaching specific behavior
to these contexts. In other words, a notion of context has
to be modular and composable.

Some applications adapt their behavior by determining
the current context to decide whether context-dependent
functionality should be executed. Other context-aware ap-
plications are reactive and trigger specific functionality in
case of context change.

When dealing with reactive context-aware applications,
it makes sense to describe (specific) contexts in terms of
changes to the overall context information (the global con-
text). Moreover, specifying these changes as events intro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’09, July 7, 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-538-3/09/07 ...$10.00.

duces a notion of event-based context that links context-
aware programming with event-based programming and
makes it straightforward to define contexts that depend on
events observed in an application.

A modular notion of context is still difficult to provide
when the context depends on events happening at differ-
ent places in the application. This paper introduces a new
model of event-handling, combining aspect-oriented tech-
niques with references to explicit events, which makes it easy
to define event-based contexts declaratively and composi-
tionally, and thus enables modular programming of reactive
context-aware applications.

Section 2 further elaborates on the need for modular,
event-based contexts. Section 3 presents the basic features
of events as available in ECaesarJ, a concrete implementa-
tion of the proposed ideas as an extension to CaesarJ, and
explains how they support definition and usage of event-
based contexts. Section 4 discusses more advanced issues,
showing in particular how events can be defined in a declar-
ative way in terms of other events, thereby supporting com-
posable contexts. Section 5 relates our approach to other
event-handling and context-handling approaches. Section 6
concludes.

2. MOTIVATION
A typical example of a context-aware application is soft-

ware for building automation. Such an application is respon-
sible for smart control of various devices within the building:
windows, lights, heaters, hi-fi equipment in a private house,
and so on. The behavior attached to the devices depends
on specific conditions within the building, which we iden-
tify as different contexts. For example, sound notifications
make sense only when someone is at home; artificial lighting
is necessary when it is dark. So we can identify different
contexts, such as “someone at home” and “darkness”, which
significantly influence the behavior of the system.

A behavior may depend on a context in two different ways.
First, the reaction to certain events or behavior of various

processes may depend on the currently active contexts. For
example, when a motion is detected in front of a house,
the front light may be turned on only if it is dark, i.e. if
the context “darkness” is active. Similarly, an important
notification, of a postman for instance, may be announced
by voice if the context “someone at home” is active, while
otherwise it would be sent to the cell-phone(s) associated to
the house.

Second, it may be important to react to context changes.
For example, lights must be turned on when it gets dark, and

turned off when it gets light again. In such situations it is
necessary to react to the changes of the context “darkness”,
i.e. the lights must be turned on when this context gets
active and turned off when it is deactivated.

2.1 Events Provide Context
Dependency on active contexts can be implemented by

conditional statements that check which contexts are active
and depending on this execute one behavior or the other.
The difficulty lies in implementing a condition to check if a
particular context is active. The computation using the cur-
rent program state to determine whether the context is ac-
tive may be complicated and inefficient. More importantly,
the current program state may be insufficient to determine
whether a context is active, and historical information about
events may be required. For example, if it was not recorded
that someone entered a house (a door was opened), it may
be impossible to determine this fact afterwards (assuming
there is no movement sensor). In such cases the application
must explicitly keep track of the active contexts by observing
the relevant events.

Moreover, the solution based on conditional statements
is not suitable for expressing reactions to context changes.
In such situations we are interested not in the value of the
condition specifying when a context is active, but in the
changes to this value. Thus, for each context, we are inter-
ested in events indicating when the context is activated or
deactivated. Actually, these events define the context.

As we can see, in a lot of cases we need events to express
behavior of context-aware applications. The problem is that
conventional programming languages lack good support for
defining events and the corresponding reactions. For exam-
ple, in Java applications, events are mostly encoded by the
Observer design pattern [4]: The available events are de-
clared as methods of various observer interfaces; the events
are triggered by calling these methods, and reactions to the
events are defined by implementing the methods.

One problem with the implementation of events by de-
sign patterns is that such an implementation introduces a
considerable overhead on the required amount of code, re-
lated with registration and notification of observers. This
problem can be alleviated by dedicated language support
for these mechanisms, e.g. events and delegates in C#, but
another and more important problem is that a declarative
definition of events is not supported. The occurrences of
an event are defined by explicit notification calls, i.e. by
explicitly triggering the event, which is problematic in two
respects.

First, the events defined in this way are difficult to reuse
for defining other events. Indeed, it is natural to define
events as conjunctions or disjunctions of other events, or by
constraining some other events with additional conditions.
For example, an event denoting that someone enters a house
could be defined as a disjunction of the respective events
of multiple outside door sensors. Furthermore, the event
“someone enters a house” can be constrained with various
conditions to define further useful events, e.g. if nobody is
at home this event would mark the beginning of the context
“someone at home”, or if the alarm system of the house is
armed the event would be interpreted as an“intrusion”event
and denote the beginning of the corresponding context.

Second, since events are defined by notifications they are
defined from the perspective of the notifier. In many cases

it is more convenient to define an event from the perspective
of the observer, because then we can use the attributes and
relationships of the observer for the definition of the event.
For example, to define the context asserting that a given
person is at a given location, an object implementing this
context needs to observe the event “the person enters the
location”. A location can notify only about the event when
it is entered by any person. The object defining the context
would have to specialize such an event for the given location
and the given person.

2.2 Context Modularization
As described in [10], the definition of when to apply a

context-dependent behavior and the definition of a context
should be separated so that the definition of a context and its
attached behavior can be independently reused and evolved.

We would like to promote the use of an abstract notion of
context in order to improve the level of decoupling between
the context definition and its use. The first benefit of such a
decoupling is the possibility to reuse a behavior with several
contexts. Indeed, the use of an abstract context makes it
possible to postpone the decision on the concrete context to
be used, providing a more stable design. The second bene-
fit is the possibility to reuse the same context with several
behaviors, which are not hardwired to the use of specific
contexts. We will see that abstract contexts also make it
possible to define generic compositions of contexts.

In an object-oriented language, such a decoupling can be
achieved by using polymorphism. An abstract class Context
can be defined for representing a generic context. Context-
dependent applications can use objects of type Context rep-
resenting different contexts. A method isActive defined in
the class Context can be used to determine if contexts are
active in order to trigger the proper behavior.

In order to attach reactive behaviors to context changes,
in addition to the method isActive, a context has to declare
the events indicating context changes in its interface. Thus,
for abstracting from concrete contexts we need a means to
abstract from concrete events. In order for a reactive behav-
ior to be reusable with different contexts it must be defined
in terms of such abstract events. Furthermore, in order to
maintain composability of contexts, these events must also
be composable.

3. SIMPLE CONTEXTS
We have refined and implemented the previous ideas in

an extension of the programming language CaesarJ [1]:
ECaesarJ. ECaesarJ combines the virtual classes and
propagating mixin composition of CaesarJ with polymor-
phic events and support for hierarchical state machines.
This section describes how simple contexts can be defined
and used based on ECaesarJ events.

3.1 Explicit Events
In a general sense an event denotes something of inter-

est happening in time. An event has a source (or a sub-
ject) and destinations (or observers) interested in the event.
From the point of view of the source, events can be explicit
or implicit. Explicit events are explicitly triggered by the
source and serve as notifications to the destinations that
need to react to a change in the source. Besides explicitly
triggered events, we can consider all identifiable changes of
program state as implicit events. Examples of such events

are method calls or value changes of object attributes. In
aspect-oriented languages, the dynamic occurrences of such
events are known as join points.

In ECaesarJ explicit events are triggered using a syntax
similar to that of method calls. A class (source of events)
can trigger events, whose signature (optional return type,
name, and formal parameters) is declared in the class. For
example, the class below uses the class java.util.Timer to
generate an event time each day at a fixed time.1

cclass TimeService extends TimerTask {
static long DAY = 1000 * 60 * 60 * 24; // day in ms
event time();
TimeService(Calendar time) {

new Timer().schedule(this , time.getTime(), DAY);
}
public void run() { time(); }

}

A class interested in the event, triggered by a specific ob-
ject, can then define a reaction to it through the definition
of an event handler associated to the event. The syntax of
an event handler is as follows: expr.event => block, where
expr is an expression returning the object that defines the
event, event is the event, block, the reaction to the event.
For instance, a class Rooster can play a song every morning
when it is time to wake up as shown below, where sts is set
up with the proper time service.

public cclass Rooster {
TimeService sts;

Rooster(SunTimeService sts) {
this.sts = sts;

}
sts.time() => {

// play the Rooster Song
}

}

Note that events provide a form of implicit invocation:
unlike a method caller, which knows the callee, the event
source does not know the destination of the event. On the
opposite, the event destination knows about its source.

3.2 Context Definition
In ECaesarJ, an object can use events defined by other

objects. We use this feature to implement contexts in a mod-
ular way, as objects defining pairs of events in and out that
activate and deactivate the contexts, respectively. In addi-
tion, a context provides a method isActive, which makes it
possible to find out whether the context is currently active.

Since, as we will soon see, events can be defined not only
by explicit triggering, but also in other ways, an event can
be declared as abstract to abstract from the way it is im-
plemented in subclasses. In a class Context, describing an
interface common to all specific context definitions and giv-
ing its partial implementation, we declare events in and out

as abstract, so that they can be defined differently in the
subclasses of Context. The abstract class Context is given
below.

1 abstract cclass Context {
2 abstract event in();

1We use the keyword cclass for classes supporting specific
ECaesarJ features. The keyword class is reserved for pure
Java classes for backwards compatibility. In the listings we
skip visibility annotations for the sake of simplicity.

3 abstract event out();
4

5 boolean active;
6

7 boolean isActive() { return active; }
8

9 in() => { active = true; }
10 out() => { active = false; }
11 ...
12 }

A context maintains a boolean variable indicating the
state of the context: active or inactive. The language con-
structs of lines 9 and 10 define event handlers that update
the state of the context when one of the events in and out

occurs. Since the state of the context is tracked, the im-
plementation of the method isActive is obvious, avoiding
evaluation of (potentially expensive) conditions to determine
whether the context is active.

A concrete context must provide a concrete definition for
the events in and out. For example, the class Scheduled-

NightTime below implements a concrete context by defining
the events in and out as the events time triggered by the
time services sunset and sunrise.

cclass ScheduledNightTime extends Context {
TimeService sunset, sunrise;

event in() = sunset.time();
event out() = sunrise.time();

}

3.3 Context Use
A context-dependent class can maintain one or more ref-

erences to context objects, and express context-dependent
behavior as reactions to these events or by using the method
isActive. A context-dependent class can also define its own
events in terms of the events defined (provided) by a con-
text. This provides a form of aliasing. For example, the
listing below shows the implementation of a class LightAu-

tomation, which defines the events mustTurnOn and must-

TurnOff, triggered when the light must be turned on and
turned off, respectively. The class is parameterized with an
abstract context, so that these events can be defined as the
activation and deactivation of the context.

1 abstract cclass ILight {
2 abstract void switchOn();
3 abstract void switchOff();
4 }
5

6 cclass LightAutomation {
7 ILight light;
8 Context context;
9

10 event mustTurnOn() = context.in();
11 event mustTurnOff() = context.out();
12

13 mustTurnOn() => { light.switchOn(); }
14 mustTurnOff() => { light.switchOff(); }
15 ...
16 }

The previously defined context ScheduledNightTime can
be used together with instances of the class LightAutoma-

tion of the previous section in order to turn off some lights
when it is dark.

LightAutomation automator = new LightAutomation();
automator.setLight(...);

automator.setContext(new ScheduledNightTime());

The use of a class parameterized with an abstract context
makes it possible to instantiate the class LightAutomation

with different contexts. For example, an instance can be cre-
ated for a light in the living room when it is dark. Another
instance can be created for the front light in case there is a
motion detected in front of the house at night.

Note that such reuse is enabled by the fact that refer-
ences to events are polymorphic, i.e. they can be bound
to different concrete event definitions, depending on the dy-
namic type of their owner object. For example, in line 10 of
the above example, the event context.in() is used without
knowing its concrete definition: it definition depends on the
dynamic type of the variable context.

4. ADVANCED CONTEXT DEFINITION
We have seen so far that events could be explicitly trig-

gered and aliased. But they can also be refined using con-
ditions as well as implicitly triggered. This section details
these advanced features, including quantification over im-
plicit events and quantification over a list of events.

4.1 Event Refinements
Within an event destination, the event can be refined by

attaching conditions on parameters exposed by the event
and on values computed in the scope of the enclosing class.
In addition, an event can be defined as a composition of
other events. Note that, on the destination side, an explicit
event can actually be seen itself as a condition: the fact that
the event is indeed received by the destination.

As an example, the listing below shows a class Sen-

sorNightTime, an alternative implementation of a context
representing night time, using a light sensor to measure day-
light intensity. The context observes the event intensi-

tyChanged on the sensor in order to determine when it is
getting dark. The event in is defined as the occurrence of
the event intensityChanged when the context is inactive
and the light intensity is lower than a given threshold. The
deactivation event is defined in an analogous way.

cclass SensorNightTime extends Context {
LightSensor sensor;
int threshold;

event in() = sensor.intensityChanged(int i) &&
i f(!isActive() && i < threshold);

event out() = sensor.intensityChanged(int i) &&
i f(isActive() && i > threshold);

...
}

4.2 Implicit Events
In addition to explicitly triggered events, we also consider

identifiable points of execution as implicit event occurrences.
An implicit event is defined using AspectJ-like pointcuts. As
an example, the listing below illustrates a third alternative
for a context denoting night time. In this case, night time
can be detected indirectly considering that blinds are au-
tomatically closed at night time and opened at day time.
Thus, the events in and out are defined as the execution of
the methods that close and open blinds, respectively.

cclass BlindNightTime extends Context {

event in() = execution(* *.closeBinds(..));
event out() = execution(* *.openBinds(..));

}

4.3 List Quantification
Since implicit events include AspectJ-like pointcut desig-

nators, this kind of event definition supports quantification
over program structure. In addition to this form of quantifi-
cation, ECaesarJ supports quantification on a list of ob-
jects. An event can be defined as a disjunction of events
with the same name. This is done using an expression of
the form some(list).evt(params), where list denotes a list
of objects, and evt an event defined by these objects.

This form of quantification is necessary for defining con-
texts that depend on the state of multiple objects. When
computating the condition checking whether a context is ac-
tive, it is possible to iterate over multiple objects and query
their state. List quantification gives an analogous possibility
for event-based definitions of contexts: the events denoting
the beginning and the end of a context can be defined in
terms of events of multiple objects. For example, the con-
text of the presence of somebody in a location can be de-
scribed in terms of events of motion sensors available in this
location. A motion sensor provides an event motion. The
constructor some is very useful in this case. As illustrated
in the example below, the presence context is activated when
some motion is detected:2

cclass PresenceAtLocation extends Context {
Location location;
TimeService timeOut;
event in() = some(location.motionSensors()).motion();
event out() = timeOut.time();
...

}

4.4 Context Composition
As described in [10], contexts need to be composable.
For example, we may need a context, in which somebody

is at a location and it is dark, in order to turn on the lights at
the location. This implies a context that is the conjunction
of the contexts SensorNightTime and PresenceAtLocation

of the previous section.
Contexts can be composed by combining the activation

and deactivation events of these contexts. Thanks to poly-
morphic events, different kinds of context compositions can
be implemented in a generic way. The example below de-
scribes the conjunction of two contexts as a new context
AndContext.

cclass AndContext extends Context {
Context ctx1, ctx2;
event in() = ctx1.in() && i f(ctx2.isActive()) ||

ctx2.in() && i f(ctx1.isActive()) ||
ctx1.in() && ctx2.in();

event out() = ctx1.out() && i f(ctx2.isActive()) ||
ctx2.out() && i f(ctx1.isActive());

AndContext(Context ctx1, Context ctx2) {
this.ctx1 = ctx1; this.ctx2 = ctx2;

}
}

2The event out is defined as occurring a fixed amount of
time after the last detected motion. For this we use the
class TimeService presented in the previous section.

In a similar way other generic context compositions can
be defined, such as a disjunction, negation, and difference of
contexts.

5. RELATED WORK

Context-Handling Approaches
In [10], Tanter et al. advocate separating the definition of
a context from its use so that attached behavior can be in-
dependently reused and evolved. They use their notion of
context to introduce context-aware aspects as aspects that
match base-program join points depending on whether a
given context is active. As in context-aware aspects, our no-
tion of context is explicit, composable, and can be activated
by observing join points. However, we explicitly introduce
events, which includes not only join points but also explicitly
triggered events. In addition, we modularize the definition
of the events that activate and deactivate a context.

ContextL [2] is an Object-Oriented Programming language
targeted at Context-Oriented Programming [6]. It provides
means to associate partial classes and method definitions
with layers and to activate and deactivate such layers in
the control flow of a running program. Thus, the behavior
of objects is extended with the activated layers. Our ap-
proach is not comparable with ContextL as we deal with
different issues. ContextL deals with context-dependent ac-
tivation layers of program structure and behavior, while our
focus is more on declarative definition of the contexts them-
selves. In ContextL, the active contexts correspond to active
layers. Since layers are activated following a stack disci-
pline, (de)activation of contexts is more restricted than the
(de)activation of the contexts presented in our approach.

In previous work [8], we presented a model for event-based
contexts, in which we proposed to define contexts in terms
of context activation and deactivation events. The focus
was both on context modularization and on modeling the
reaction to context changes using a process algebra, making
it possible to detect property violations. This paper makes
the notion of context presented in [8] concrete by using the
events of ECaesarJ.

Event-Handling Approaches
Events identify phenomena happening in an application and
the environment, which can determine different contexts.
Usually, some source components trigger events and destina-
tion components handle them. For modularization reasons,
event sources are expected to be as much as possible un-
aware from the destinations of these events. The observer
design pattern [4] makes this possible by injecting, within
each potential source of events, an infrastructure providing
a registration service for the interested observers as well as
a notification service for the source, which, as a result, does
not need to explicitly invoke the observers, destinations of
the event. This realizes a weak form of Implicit Invocation
(II). Implicit Invocation was initially introduced in [5] as an
architectural style in which event sources are completely un-
aware of event destinations with registration and notification
supported behind the hood. Our proposal uses a form of im-
plicit invocation. However, in our case, an event triggered
by a source can be seen as several events from the point of
view of the destinations. These views can be composed in a
declarative way and can be reused.

In Aspect-Oriented Programming (AOP) [7], join points
can be seen as events that are implicitly triggered in the
execution of an application, and advices can be seen as han-
dlers of such events. Although join points are again defined
from the point of view of the destination, there is no explicit
notion of event that can also be explicitly triggered. Unlike
pointcuts, the events in ECaesarJ are late-bound, which
enables reuse of event of other objects, as well as abstrac-
tion from these events.

Ptolemy [9] is a hybrid approach between II and AOP.
Events of Ptolemy are associated with code-snippets, which
can be seen as explicit triggering of join points. Classes can
define bindings to such events or to compositions of multi-
ple events. Ptolemy, however, does not provide features for
event abstraction and declarative definition of events: the
events are declared globally and can be defined by explicit
triggering only.

Like in ECaesarJ, C# events are also declared as mem-
bers of objects and can be explicitly triggered. C# however
does not support declarative definition of events in terms
of other events and join point interception. Events of other
objects can be used only by explicitly registering to them.

6. CONCLUSION
We have shown how ECaesarJ events support declarative

and modular definition of event-based contexts. Direct sup-
port for events in a programming language, supplied with
dedicated referencing and composition mechanisms, facili-
tates natural and concise definition of contexts in terms of
events. Polymorphic events enable decoupling of context
definition from its use, thereby supporting independent evo-
lution and reuse of both the context definitions and the be-
haviors attached to the contexts. Finally, the possibility of
composing polymorphic references to events can be exploited
for generic composition of contexts.

In this paper, a conjunction of events is limited to a con-
junction of conditions applying to the same program execu-
tion point. ECaesarJ makes it also possible, using state
machines, to define the conjunction of events triggered from
different program execution points, which is also useful for
defining the events that activate and deactivate contexts, as
shown in [8].

A number of ECaesarJ constructs, including events,
event handlers, and state machines have been inspired by
construct and concepts used in concurrent languages. The
initial model, developed in [8], was also inherently concur-
rent. A natural step would therefore be to enhance ECae-
sarJ with concurrent facilities.

Acknowledgments
This work has been partly supported by the European project
AMPLE: Aspect- Oriented, Model-Driven, Product Line En-
gineering (STREP IST-033710).

7. REFERENCES
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.

An overview of CaesarJ. In Transactions on
Aspect-Oriented Software Development I, volume 3880
of Lecture Notes in Computer Science, pages 135–173.
Springer-Verlag, Feb. 2006.

[2] P. Costanza and R. Hirschfeld. Language constructs
for context-oriented programming: An overview of

ContextL. In DLS ’05: Proceedings of the 2005
Symposium on Dynamic Languages, pages 1–10. ACM
Press, 2005.

[3] A. K. Dey and G. D. Abowd. Towards a better
understanding of context and contex-awareness. In
Proceedings of the CHI 2000 Workshop on the What,
Who, Where, When and How of Context-Awareness,
The Hague, The Netherlands, Apr. 2000. Georgia
Tech.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns : Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[5] D. Garlan and D. Notkin. Formalizing design spaces:
Implicit invocation mechanisms. In VDM’91: Formal
Software Development Methods, volume 551 of lncs,
pages 31–44, Noordwijkerhout, The Netherlands, 1991.

[6] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125–151, 2008.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, ECOOP’97 - Object-Oriented
Programming - 11th European Conference, volume
1241 of Lecture Notes in Computer Science, pages
220–242. Springer-Verlag, June 1997.

[8] A. Núñez and J. Noyé. An event-based coordination
model for context-aware applications. In D. Lea and
G. Zavattaro, editors, 10th International Conference
on Coordination Models and Languages
(COORDINATION 2008), volume 5052 of Lecture
Notes in Computer Science, pages 232–248, Oslo,
Norway, June 2008. Springer-Verlag.

[9] H. Rajan and G. T. Leavens. Ptolemy: A language
with quantified, typed events. In J. Vitek, editor,
Proceedings of the 22nd European Conference on
Object-Oriented Programming (ECOOP 2008), volume
5142 of Lecture Notes in Computer Science, pages
155–179, Paphos, Cyprus, July 2008. Springer-Verlag.

[10] E. Tanter, K. Gybels, M. Denker, and A. Bergel.
Context-aware aspects. In W. Löwe and M. Südholt,
editors, Proceedings of the 5th International
Symposium on Software Composition (SC 2006),
volume 4089 of Lecture Notes in Computer Science,
pages 227–242, Vienna, Austria, Mar. 2006.
Springer-Verlag.

