
Towards Safe and Flexible Object Adaptation

Tetsuo Kamina
The University of Tokyo

7-3-1 Hongo Bunkyo-ku Tokyo
113-0033 Japan

kamina@acm.org

Tetsuo Tamai
The University of Tokyo

3-8-1 Komaba Meguro-ku Tokyo
153-8902 Japan

tamai@acm.org

ABSTRACT
In this paper, a programming language NextEJ is proposed.
NextEJ is based on Epsilon model, which realizes object
adaptation to contexts. The novelty of Epsilon model is
its ability to make objects be able to freely enter or leave
contexts dynamically and belong to multiple contexts at a
time. However, such kind of flexibility also easily brings
type-unsafety. NextEJ tackles this problem by introduc-
ing a new feature called context activation scope. Inside a
context activation scope, it is assured that an object is al-
ways bound with the role activated so that no method-not-
understood errors occur at run-time. Furthermore, context
activation scope can be nested so that multiple contexts can
be activated at a time. A role instance has a pre-defined field
thisContext which refers to its enclosing context instance.
In the case of multiple context activations, the reference of
thisContext is interpreted as a composite context whose
behavior is determined by the order of activations.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented Pro-
gramming; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms
Languages

Keywords
Role model, Epsilon, NextEJ

1. INTRODUCTION
Context-awareness is becoming an increasingly important

feature of many kinds of applications, ranging from busi-
ness applications to mobile and ubiquitous computing sys-
tems. To explicitly support context-awareness in program-
ming language level, a new programming approach, called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’09, July 7, 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-538-3/09/07 ...$10.00.

Context-oriented Programming (COP), and its implement-
ing languages have been proposed[14, 8, 13].

There are many challenges in realizing COP. For example,
to achieve context-awareness, a context (or layer) should be
a first-class entity explicitly referred at run-time. To realize
context-dependent behavioral changes of objects, the rela-
tionship between objects and contexts should be changed at
any time, and multiple contexts may affect the behavior of
an object. To enhance reuse of code, each context should be
implemented as a reusable module. To realize all of these re-
quirements is actually a challenging issue; for example, Con-
textJ and its friends (such as ContextL and ContextS) pro-
vide a flexible mechanism of activating/deactivating some
pieces of code at run-time, but allow that only for whole
classes at once. Thus, they does not support instance-specific
context-dependent behavior, where the context-dependent
behavior is activated only for a single instance.

One of the promising way of realizing these requirements
is to adopt Epsilon model [28, 29] in COP. In Epsilon, a
context is defined as a field of collaboration between roles
and an object adapts to the context assuming one of the
roles. Objects can freely enter or leave contexts and be-
long to multiple contexts at a time. Contexts and roles are
the first class constructs at run-time referred by their names.
Furthermore, contexts are independent reusable components
to be deployed separately from objects. A Java-based im-
plementation language EpsilonJ is also developed [22].

The flexibility provided by Epsilon and EpsilonJ, however,
easily brings type-unsafety. Even though our previous work
reveals that where execution of EpsilonJ program gets stuck
in a core language level [16] so that we can insert dynamic
type-checking in the compiled code, the underlying calculus
shows its essential type unsafety including the need of down-
casting.

In this paper, we propose a programming language NextEJ.
NextEJ tackles the problem of type unsafety of Epsilon model
by introducing a new language feature called context activa-
tion scope. In the context activation scope, we can denote
which role of objects belonging to an context is bound and
activated inside the scope. If the designated object is not
bound with the role, the role instance is implicitly created
and bound with the object, so it is assured that the object
always assumes the role inside the scope and no method-not-
understood errors occur at run-time. Furthermore, context
activation scopes can be nested so that multiple contexts can
be activated at a time. A role instance has a pre-defined field
thisContext which refers to its enclosing context instance.
In the case of multiple context activations, the reference of

context Building {
role Guest {

void escape() { .. }
}
role Security {

void notify() {
Guest.escape();

}
}

}

context Shop {
role Customer {
void buy(Item i) {

int p = i.getPrice();
Seller.getPaid(p);

} }
static role Seller {
void getPaid(int price)

{ ... } }
}

Figure 1: Context and role declarations

thisContext is interpreted as a composite context whose
behavior is determined by the order of activations.

Contributions of this paper are three folds:

• Designing a role-based COP language NextEJ, a type
safe variant of EpsilonJ satisfying the requirements of
COP.

• Introducing the feature of multiple context activation
into Epsilon model, realizing a more natural and flex-
ible way for representing context-awareness.

• The mechanism of composite contexts and ordering of
multiple context activations.

This paper reports the design concept of NextEJ using a
simple example. Formal definition, proof of type soundness
and other properties, language implementation, and more
case studies remain as future work.

2. NEXTEJ: A SAFE AND FLEXIBLE COP
LANGUAGE

2.1 An Example
To show how our proposal supports COP, we consider

the following example. This example features two contexts,
building and shop. Inside a building, there are several roles
such as guest, administrator, security agent, and owner.
Similarly, there are some roles inside a shop such as customer
and seller. When a person enters a building, she assumes a
role of guest. Similarly, she assumes a role of customer when
she enters a shop. There are many interactions among roles;
e.g., a security agent notifies all the guest in the case of
emergency, or a seller sells the customer an item. When she
leaves from a context (e.g. a building) she quits the role she
assumes (e.g. a guest). Furthermore, shops may be inside a
building, thus a person may enter multiple contexts (i.e. a
building and a shop) at a time.

2.2 Context and Role Declarations
Figure 1 shows an example of context and role declara-

tions in NextEJ. Each of structure of contexts and roles is
the same as that of EpsilonJ’s contexts and roles, respec-
tively. The context Building consists of two roles, Guest

and Security. Inside contexts and roles, we can declare
methods and fields, just as classes. For example, the role
Guest declares a method escape(), which is called in the
body of notify() declared in Security.

A context can be instantiated by a new expression. On the
other hand, an instance of role cannot be created explicitly,
as we will see later. The connections of role instances and

Figure 2: Structure of role instances and a context
instance

Figure 3: Structure of an object bound with role
instances

the enclosing context instance are shown in Figure 2. A role
instance is always associated with an instance of its enclosing
context. A set of instances of a role associated with the same
enclosing context instance is called a role group, which is
referred by the role name. For example, the method call
Guest.escape() is interpreted as calling methods escape()
of all the Guest instances. A role declared as static is called
a singleton role, which means that at most one instance of
the role with the same enclosing context instance can be
created.

2.3 Object Adaptation and Context Activation
An object entering contexts is created as a class instance,

just as in Java. An object enters a context by assuming one
of its role instances. Furthermore, an object can be bound
with multiple role instances and can activate or deactivate
some of them (Figure 3). For example, assuming that we
have a class Person, object adaptation to a context can be
written as follows:

Building midtown = new Building();

Person tanaka = new Person();

Person suzuki = new Person();

Person sato = new Person();

bind tanaka with midtown.Guest(),

suzuki with midtown.Guest(),

sato with midtown.Security() {

...

sato.notify();

}

The sentence beginning from the keyword bind is called a
context activation scope. Before entering the execution scope
(enclosed between braces), it creates role instances and bind
them with the corresponding objects, if these objects are not
bound with the corresponding roles. If an object is already
bound with the corresponding role, the role instance is not

created but the existing role instance is activated. Inside the
parentheses following the role name, we put the arguments
for the constructor of the role. These arguments are used
only when the object is not bound with the role so that the
role instance is created.

After entering the execution scope, it is assumed that each
object declared in the bind clause is bound with the corre-
sponding role instance. For example, in the above code, sato
is bound with a role midtown.Security() (which means
sato enters the context midtown as a Security). Inside
the following brace, sato acquires the behavior (and states)
declared in Building.Guest, thus we can safely call the
method notify() declared in Building.Guest on sato. In-
side the context activation scope, it is considered that sato
is a subtype of Person and midtown.Guest, like multiple in-
heritance or mixins [5]1. As we will see later, a context can
also be composed with another context, and a subtyping re-
lation exists between a context and the composite context.
To ensure type safety, all the variables referring to a context
instance are considered final.

Note that outside the context activation scope, we cannot
access methods declared in roles. It does not mean that
the acquired role is discarded outside the scope. Instead,
the role instance and its states are retained but deactivated,
recovering the original behavior of the object. The retained
role instance will be activated again if the object assumes
the same role of the same context.

The idea of activation/deactivation of role instances is
taken from ContextJ and one of the major differences from
EpsilonJ2. Inside the context activation scope, it is always
assumed that the object is bound with the corresponding
role instance, thus we can safely access the role instance
method. In EpsilonJ, on the other hand, once an object is
bound with a role instance, this role instance is activated
only through down-cast expressions. Since where an object
is bound or unbound with the role instance cannot be de-
termined statically, this down-casting may results in a cast-
exception. Once the object is unbound with the role, the
role instance becomes garbage. Instead, in NextEJ, the de-
activated role instance may be activated again, preserving
its states.

An object may also be unbound with the role instance,
which is explained in section 2.6.

2.4 Multiple Context Activation
An object may enter multiple contexts. For example,

there is a case where a shop is inside a building; in this
case, a customer of the shop is also a guest of the enclosing
building. To represent such a situation, context activation
scope can be nested, as shown in the following example:

Building midtown = new Building();

Person tanaka = new Person();

bind tanaka with midtown.Guest() {

...

Shop lawson = new Shop();

Person sato = new Person();

bind tanaka with lawson.Customer(),

sato with lawson.Seller() {

tanaka.buy(someItem);

1midtown.Guest is a dependent type [24, 23, 25].
2As in ContextJ, the context activation scope is dynamically
scoped.

context Building {
String name;
Building(String name) {
this.name = name; }

void currentPosition() {
System.out.println(
" "+name);

next();
}
role Guest { ... }
role Security { ... }

}

context Shop {
String name;
Shop(String name) {

this.name = name; }
void currentPosition() {

System.out.println(
" "+name);

next();
}
role Customer { ... }
role Seller { ... }

}

Figure 4: Context method combination

}

...

}

In this example, tanaka firstly enters the context midtown
as a Guest; then it enters the context lawson, which is lo-
cated inside midtown, as a Customer; finally it buys someItem
(and pays to sato, as described in Figure 1).

Note that multiple context activation is not supported by
EpsilonJ, since in EpsilonJ any compositions among roles
are not considered.

2.5 Referring the Enclosing Context and Com-
posite Context

Another feature of NextEJ that is not provided by Ep-
silonJ is that, in NextEJ, the enclosing context instance
and its methods can be accessed through the special field
thisContext which is implicitly declared in all the role dec-
larations and always refers to the enclosing context instance.
Therefore, if contexts Building and Shop are declared as
shown in Figure 4, the following code is allowed in NextEJ:

Building midtown = new Building("Midtown");

Person tanaka = new Person();

bind tanaka with midtown.Guest() {

Shop lawson = new Shop("Lawson");

bind tanaka with lawson.Customer() {

tanaka.thisContext.currentPosition();

}

}

In this code, the field thisContext is accessed on tanaka,
which is allowed since tanaka is bound with role instances.
Since the enclosing context instance declares a method
currentPosition (which can be statically assured by using
the information provided by the context activation scope),
we can safely call currentPosition on thisContext, which
prints where tanaka reside on the standard output. Note
that the thisContext field is considered final, since it refers
to a context instance (recall that all the variables referring
to a context instance are considered final).

Note also that tanaka enters two contexts, midtown and
lawson, and both of them declares method currentPosition.
Actually, on thisContext we can access a composite context
of midtown and lawson. The ordering of composition is de-
termined by the order of activation; the inner most context
always precedes the other contexts. In Figure 4, the decla-
ration of currentPosition contains a method call next(),
which is similar to inner of Beta [21, 10]. It calls the next
method if it exists. If the next method does not exist, calling

next() has no effects. Therefore, currentPosition declared
in Shop is firstly called; then that declared in Building is
called. The above code therefore prints a string " Lawson

Midtown" on the standard output.
Currently inheritance relations between contexts at the

definition level, which may complicate the method combi-
nation rule, are not considered.

2.6 Unbinding and Swapping Roles
As mentioned earlier, a role instance is deactivated outside

the context activation scope. This deactivated role instance
can be discarded, and we can bind the object with a new
(fresh) instance of the role:

// All the states of midtown.Guest

// bound with tanaka is discarded.

tanaka.unbind(midtown.Guest);

// A fresh instance of midtown.Guest

// is bound with tanaka again.

bind tanaka with midtown.Guest() {

...

}

The unbind() method takes a name of role as an argu-
ment. If the receiver object is bound with the argument
role, the argument role is removed from the receiver and be-
comes a garbage (If the role is not bound with the object,
nothing happens).

Furthermore, as in EpsilonJ, another object may also as-
sume the removed role instance. We can express it by the
bind statement (context activation scope) followed by the
from clause:

Person sato = new Person();

bind sato with lawson.Seller() from tanaka {

...

}

The above code results in that tanaka drops the instance
of role lawson.Seller and sato takes over it (if tanaka

is not bound with lawson.Seller, a new instance of it is
created for sato).

To ensure that the role bound with the receiver of unbind
(or successor of from clause) is actually deactivated, the
method containing unbind operation has to declare the fol-
lowing unbind clause:

void unbindGuest(Person p)

unbind Building.Guest {

...

// midtown is an instance of Building

p.unbind(midtown.Guest);

}

Calling unbindGuest method inside an context activation
scope that activates Guest on any instance of Building is
prohibited:

bind tanaka with midtown.Guest {

unbindGuest(tanaka) // compile error !!

}

2.7 Other Features Taken from EpsilonJ
NextEJ also has a couple of features found in EpsilonJ. For

example, a role may declare a required interface. This is a

way of defining an interface to a role and it is used at the time
of binding with an object, requiring the object to supply
that interface, i.e. the binding object should possess all the
methods specified in the interface. A required interface can
be declared using the requires clause as follows:

context Building {

role Guest requires { String name(); } {

... }

}

When a required interface is declared to a role, meth-
ods can be imported from the binding object. For example,
supposing that Person has a method name(), in the afore-
mentioned bind statements the method name() of tanaka is
imported to the Guest role instance through the interface.

The imported method can be used in the body of role
declaration. Furthermore, the role may override the im-
ported method, and in the overriding method, we may call
the original (overridden) method by calling the method with
the same signature on super.

For type-checking of this binding, it is only necessary for
the class to have a method that has the same name and the
same signature required by the role. In other words, the class
has to be a structural subtype of the requires interface3.

2.8 Properties
NextEJ has the following features (Each of section number

in parentheses indicates where the feature is explained):

Behavioral variations. In NextEJ, we may specialize the
behavior of object by binding a role that overrides the
object’s method (section 2.7). Furthermore, the con-
text and role methods can also be specialized by com-
posing contexts (section 2.4).

Layers. Related context-dependent behavioral variations are
grouped as a context, which is a first-class entity that
can be explicitly referred by its name (section 2.2).

Activation. Contexts can be activated and deactivated dy-
namically at run-time. In NextEJ, this activation is
performed on a single, particular object so that instance-
specific context-dependent behavioral variations are sup-
ported (section 2.3).

Context. The special field thisContext provides the way
to access the enclosing context instance and its meth-
ods (section 2.5).

Scoping. The scope within which contexts are activated or
deactivated is explicitly controlled by the context ac-
tivation scope (section 2.3). Context activation scope
can be nested so that multiple contexts can be acti-
vated at a time (section 2.4).

Therefore, it can be said that NextEJ satisfies all the re-
quirements of COP mentioned in [14]. Furthermore, NextEJ
has the features provided by Epsilon model including encap-
sulation of collaboration between roles, unbinding and swap-
ping mechanisms, required interfaces and structural subtyp-
ing. NextEJ resolves type safety problems of EpsilonJ such
as dynamic cast errors.

3A similar mechanism is also found in McJava, a Java ex-
tension with mixins [15].

3. RELATED WORK
We have overviewed the main features of NextEJ and com-

pare it with EpsilonJ. We also briefly mention about the
relationship between ContextJ and this work in section 1.
In this section, we discuss relationship between NextEJ and
other related work.

Epsilon model, on which this work is based, is related to
aspect-oriented programming (AOP). AOP has a feature of
adding aspects dynamically as well as statically [17]. One
of the most major AOP language is AspectJ [18], which is
an AOP language based on Java. The main objective of
writing aspects is to deal with cross-cutting concerns. It im-
plies that there are already exists some structure of module
decomposition. Although efforts have been made to design
software based on the AOP principle from the beginning,
the normal framework of mind for thinking aspects assumes
the existing program code as a target of inserting advices to
join points. Instead, Epsilon does not assume any existing
code and designs collaboration contexts independently. The
work corresponding to designating pointcuts and attaching
advices is executed by binding objects to roles.

Delegation Layers [26] provide flexible object based com-
position of collaborations. They combine the mechanism of
delegation [19, 27] and virtual classes [20, 6], or Family Poly-
morphism [9]; roles may be represented by virtual classes,
and composition is instance-based using delegation mecha-
nism. This approach, however, do not successfully represent
object adaptation described in this paper. For example, in
NextEJ the object after assuming a role may dynamically
throw the role away, and even the thrown role may be as-
sumed by another object and states held in the role instance
are take over by the latter object.

ObjectTeams [12] also has a similar mechanism of role
binding. In ObjectTeams, each instance of a bound role
class internally stores a reference to its base object. This
reference cannot be changed during its lifetime. By lowering
(retrieving the base object from a role object) and lifting
(the reverse translation of lowering), we can safely change
the behavior of the object at run-time. As in NextEJ, a
team (a construct of ObjectTeams corresponds to a context
in NextEJ) can be activated and deactivated. However, in
ObjectTeams, the role binding is class-based and declared at
the class declaring time. Thus the instance-based binding
and activation provided by NextEJ are not supported by
ObjectTeams.

powerJava [2] is also a similar language with NextEJ, in
that roles and collaboration fields are the first class con-
structs, interaction between roles are encapsulated, and ob-
jects can participate in the interaction by assuming one of
its roles. As in NextEJ, the type of role depends on the en-
closing context instance. However, powerJava lacks the fea-
ture of role groups that is a powerful mechanism of getting
role instances associated with the context instance reflec-
tively. Role unbinding and swapping, and explicit ordering
of context activation that affects method combination are
also unconsidered.

Mixins [5] are related to roles in NextEJ in that mixins
form partial definitions that can be reused with a number of
classes that conform the requirements of mixins. Several ex-
tensions of Java with mixins have been proposed [11, 1, 15].
Even though mixin composition is originally performed at
compile time, dynamic composition of mixins is also studied
in a core calculus [3], and such kind of object level inheri-

tance is also studied as wrappers [7, 4].

4. CONCLUSION AND FUTURE WORK
We have presented NextEJ, a safe and flexible role-based

COP language. It provides a way of naturally represent-
ing context-awareness in the programming language level.
Based on the object adaptation mechanism provided by Ep-
silon model, NextEJ supports a convenient COP feature of
activating/deactivating contexts or roles. While such activa-
tion is only supported by down-casting in EpsilonJ, NextEJ
provides a safe way of activation by context activation scope.
Furthermore, in NextEJ multiple contexts can be activated
at a time, and the behavior of composite context generated
by such multiple context activations is determined by the
order of activations.

This work, however, still in its early stage. We are plan-
ning to formalize the ideas presented in this paper to pro-
vide a solid basis for language processor implementation.
We are also going to implement a prototypical compiler to
study how this approach can be used in more realistic exam-
ples. Implementing a practical language processor or IDE
will make a big progress on the research on COP.

Acknowledgments.
This work is supported in part by Grant-in-Aid for Sci-

entific Research No.18200001 and Grant-in-Aid for Young
Scientists (B) No.20700022 from NEXT of Japan.

5. REFERENCES
[1] Davide Ancona, Giovanni Lagorio, and Elena Zucca.

Jam – designing a Java extension with mixins. ACM
TOPLAS, 25(5):641–712, 2003.

[2] M. Baldoni, G. Boella, and L. van der Torre.
Interaction between objects in powerJava. Journal of
Object Technology, 6(2):5–30, 2007.

[3] Lorenzo Bettini, Viviana Bono, and Silvia Likavec.
Safe and flexible objects with subtyping. Journal of
Object Technology, 4(10):5–29, 2005.

[4] Lorenzo Bettini, Sara Capecchi, and Elena Giachino.
Weatherweight Wrap Java. In SAC’07, pages
1094–1100, 2007.

[5] G. Bracha and W. Cook. Mixin-based inheritance. In
OOPSLA 1990, pages 303–311, 1990.

[6] Kim B. Bruce, Martin Odersky, and Philip Wadler. A
statically safe alternative to virtual types. In
ECOOP’98, volume 1445 of LNCS, pages 523–549,
1998.

[7] Martin Buchi and Wolfgang Weck. Generic wrappers.
In ECOOP 2000, volume 1850 of LNCS, pages
201–225, 2000.

[8] Pascal Costanza and Robert Hirschfeld. Language
constructs for context-oriented programming – an
overview of ContextL. In Dynamic Language
Symposium (DLS) ’05, pages 1–10, 2005.

[9] Eric Ernst. Family polymorphism. In ECOOP 2001,
volume 2072 of LNCS, pages 303–327, 2001.

[10] Erik Ernst. Propagating class and method
combination. In ECOOP’99, volume 1628 of LNCS,
pages 67–91. Springer-Verlag, 1999.

[11] Matthew Flatt, Shriram Krishnamurthi, and Matthias
Felleisen. Classes and mixins. In POPL 98, pages
171–183, 1998.

[12] Stephan Herrmann. A precise model for contextual
roles: The programming language ObjectTeams/Java.
Applied Ontology, 2(2):181–207, 2007.

[13] Robert Hirschfeld, Pascal Costanza, and Michael
Haupt. An introduction to context-oriented
programming with ContextS. In GTTSE 2007, volume
5235 of LNCS, pages 396–407, 2008.

[14] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[15] Tetsuo Kamina and Tetsuo Tamai. McJava – a design
and implementation of Java with mixin-types. In 2nd
ASIAN Symposium on Programming Languages and
Systems (APLAS 2004), volume 3302 of LNCS, pages
398–414. Springer, 2004.

[16] Tetsuo Kamina and Tetsuo Tamai. Flexible object
adaptation for Java-like languages. In Proceedings of
the 10th Workshop on Formal Techniques for Java-like
Programs (FTfJP 2008), pages 63–76, 2008.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97, 1997.

[18] Gregor Kiczales, Erik Hilsdale, Jim Hugunin,
M ik Kersten, Jeffrey Palm, and William G. Grisword.
An overview of AspectJ. In ECOOP 2001, pages
327–353, 2001.

[19] Gunter Kniesel. Type-safe delegation for run-time
component adaptation. In ECOOP’99, volume 1628 of
LNCS, pages 351–366, 1999.

[20] Ole Lehrmann Madsen and Birger Moller-Pdersen.
Virtual classes: A powerful mechanism in
object-oriented programming. In OOPSLA’89, pages
397–406, 1989.

[21] Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. Object-Oriented Programming in the
BETA Programming Language. Addison-Wesley, 1993.

[22] Supasit Monpratarnchai and Tetsuo Tamai. The
implementation and execution framework of a role
model based language, EpsilonJ. In Proceedings of the
9th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD’08), pages
269–276, 2008.

[23] Nathaniel Nystrom, Stephen Chong, and Andrew C.
Myers. Scalable extensibility via nested inheritance. In
OOPSLA’04, pages 99–115, 2004.

[24] Martin Odersky, Vincent Cremet, Christine Rockl,
and Matthias Zenger. A nominal theory of objects
with dependent types. In ECOOP 2003, volume 2743
of LNCS, pages 201–224, 2003.

[25] Martin Odersky and Matthias Zenger. Scalable
component abstractions. In OOPSLA’05, pages 41–57,
2005.

[26] Klaus Ostermann. Dynamically composable
collaborations with delegation layers. In ECOOP
2002, volume 2374 of LNCS, pages 89–110, 2002.

[27] Klaus Ostermann and Mira Mezini. Object-oriented
composition untangled. In OOPSLA’01, pages
283–299, 2001.

[28] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi
Ichiyama. An adaptive object model with dynamic
role binding. In International Conference on Software
Engineering (ICSE 2005), pages 166–175, 2005.

[29] Tetsuo Tamai, Naoyasu Ubayashi, and Ryoichi
Ichiyama. Objects as actors assuming roles in the
environment. In Software Engineering for Multi-Agent
Systems V, volume 4408 of LNCS, pages 185–203,
2007.

