
Towards Context-Aware Propagators: Language
Constructs for Context-Aware Adaptation Dependencies

Engineer Bainomugisha
∗

, Wolfgang De Meuter, Theo D’Hondt
Programming Technology Lab, Vrije Universiteit Brussel,

Pleinlaan 2, 1050 Brussels, Belgium
{ebainomu, wdmeuter, tjdhondt}@vub.ac.be

ABSTRACT
A context-aware system needs to reason about its current
context of use and select applicable adaptations to activate
or deactivate. This process is complex as often multiple
contexts are available and improper interpretation of adap-
tation dependencies may lead to inconsistent or annoying
system behaviour. This paper proposes a programming lan-
guage support for defining context-aware dependencies be-
tween adaptations. Our model is based on the ideas of the
propagator computational model to provide support for mul-
tiple dependencies that can coexist even if they contradict.
Our proposed model is analogous to relationships and mul-
tiplicities in the modelling approaches. In addition, rather
than fixed dependencies between adaptations, our model al-
lows these dependencies to change depending on the context
of use.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;
D.3.3 [Language Constructs and Features]: Constraints;
Modules, packages

Keywords
context-aware systems, context-oriented programming, con-
text reasoning, dependencies, propagators

1. INTRODUCTION
Context-aware systems are able to adapt their behaviour

depending on their context of use without explicit user in-
tervention [1]. The context of use consists of context in-
formation such as current location, time, user preference,
user’s mood or surrounding situation. By context informa-
tion we mean, any information that is computationally ac-
cessible [4]. Whenever there is context change, the system

∗Author funded by SAFE-IS project in the context of the
Research Foundation - Flanders (FWO)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’09, Genova, Italy
Copyright 2009 ACM 978-1-60558-538-3/09/07 ...$10.00.

needs to reason about the current context and select the ap-
plicable adaptations to activate or deactivate. Adaptations
may have dependencies between them to specify the seman-
tics of how the system is adapted to the new behaviour.
Managing adaptation dependencies is complex as often mul-
tiple contexts are available and improper interpretation may
lead to inconsistent system behaviour [3]. This becomes even
more complex when dependencies themselves may change,
composed, or redefined depending on the current context of
use. In such cases, multiple dependencies can coexist even
if they contradict. The lack of explicit language support for
expressing dependencies implies that the developers have no
option but to entangle the logic of managing relationships
between adaptations, as part of the application implemen-
tation.

This paper proposes a programming language support for
expressing context-aware dependencies between adaptations.
Our model is based on the ideas of the propagator compu-
tational model [6] to provide support for multiple depen-
dencies that can coexist even if they contradict. This pro-
posed model corresponds to relationships and multiplicities
in modelling approaches such as [2, 5]. In addition, rather
than fixed relationships between adaptations, our model makes
dependencies among adaptations change depending on the
context of use.

2. MOTIVATING SCENARIO
This section presents a Context-aware Fire Sprinkler Sys-

tem scenario that we use to discuss the issues that apply to
managing context-dependent adaptation dependencies.

2.1 Context-aware Fire Sprinkler System
Consider a hypothetical Context-aware Fire Sprinkler Sys-

tem (CaFSS) that provides fire fighting and preventive ser-
vices. The system is fitted with sensor agents for detecting
smoke, heat or emissions. The CaFSS classifies fire infor-
mation (class A, B, C or D) and depending on this context
information such as class of fire, the appropriate pipe (CO2,
Foam, Water, or Powder) is selected and automatically dis-
charged to smother the fire. The extinguishing speed varies
depending on the place of installation (i.e. 100mm diame-
ter for indoor, and maximum for outdoor). As a preventive
measure the system sends an SMS to the firemen and trig-
gers the alarm system in case the surroundings temperature
goes above 50 degrees Celsius. Figure 1 presents an informal
design representation of the CaFSS.

Class of fire Location

CO2

Send SMS

Trigger alarm

Sprinkle at 100mm

Sprinkle at maximum

Temperature

CaFSS

A
indoor

outdoor
Foam

B

Powder
D

Water

C

Adaptation

Context type

 Context information

>50 degrees

Figure 1: Scenario: Context-aware Fire Sprinkler System (CaFSS)

2.2 Scenario Analysis
Figure 1 shows the CaFSS that behaves differently de-

pending on the context information. Context information is
categorised as events (class of fire, temperature, and loca-
tion), represented as circles. Inside the circle is the context
information associated with its system behavioural adapta-
tion (represented as rectangular boxes). For instance, when
the fire of class A is sensed then the system is adapted to
discharge CO2.

To ensure that the system does not end up in an incon-
sistent state, proper determination of what adaptation (be-
haviour) is activated or deactivated for which class of fire
(context) is very important. For instance, assume that both
categories of fire class A and class B are sensed at the same
time. In the default case this may imply discharging CO2

and Foam extinguishers simultaneously. In this particular
scenario, this may lead to a fatal situation as the mixture
of the two chemicals may ignite the fire instead of extin-
guishing it. Therefore, developing a context-aware system
requires the programmer to clearly implement how the sys-
tem reasons about adaptation dependencies before activat-
ing the system behaviour that matches the current context
of use.

2.3 Towards Context-Aware Dependencies
In this section we identify the issues that need to be

dealt with in managing the dependencies amongst context-
dependent adaptations.

Context-aware dependencies Dependencies define rela-
tionships among the context-dependent adaptations.
These dependencies may also change depending on the
context of use. Rather one fixed relationship between
adaptations, new dependencies can be selected, defined
or composed as the context changes. For example, in
the CaFSS scenario, CO2 and Foam may be incompat-
ible when the system is indoor but may require each
other for outdoor fires or when the temperature is be-
low certain degrees.

Some of the modelling approaches already provide ways
of expressing context information and relationships among

A1 A2R
R

R1

R2

R3

c1
c2

c3

Ri - Relationship ci - Context information Ai - Adapation

A1 A2

R
c1 c2

Relationship
as Multiplicty Relationship

as Dependency
Context-aware
Relationship

Figure 2: Context-aware Dependencies

adaptations. For example, Desmet et.al. propose Context-
Oriented Domain (CODA) diagram [2] that extends
Feature Diagrams [5] with context information. Fig-
ure 2 shows the CODA diagram with multiplicity rela-
tionship to specify how many adaptations are selected
when contexts c1 and c2 are available. The rounded
box represents context-independent behaviour that serves
as a variation point for context-dependent adaptations
(represented as rectangular boxes). The dependency
relationship specifies the system semantics in case adap-
tations A1 and A2 are applicable at the same time.
Rather than one fixed dependency, we argue that the
relationship R should be be context-aware i.e. it can
take on different forms R1, R2, or R3 depending on
contexts c1, c2, or c3, respectively. This means that for
A1 and A2 adaptations the dependency between them
varies based on the current context of use. Therefore,
the need for context-aware adaptation dependencies.

Dealing with contradictions amongst dependencies
Context-aware dependencies imply that multiple de-
pendencies may coexist with each other. However, the
semantics of these dependencies may contradict each
other and in such cases one adaptation dependency
must be selected. Therefore, there is a need to deal
with these contradictions. For example in the CaFSS
scenario, providing support for context-aware depen-
dency between the CO2 and Foam adaptations. If one
rule specifies that CO2 and Foam can not coexist, and
the second specifies that when temperature is below

P

Y

Z

X

Propagator Cell

Figure 3: The Network of Propagators

20 degrees Celsius then CO2 requires Foam.

Existing approaches such as Context-Oriented Domain
(CODA) [2] attempt to solve some of these issues at the
design level by introducing context information and relation-
ships to the Feature Diagrams [5]. For example in CODA the
exclusion dependency relationship implies that two adapta-
tions can not be activated at the same time. The major
limitation of this approach is that the dependencies and mul-
tiplicities are static in nature and are meant to remain the
same throughout the system lifetime. To the best of our
knowledge, we observe that no existing language support
that addresses these issues.

The next section presents the propagator model in general
that we use to address these issues. The concrete application
of propagators to context-aware dependencies is explained in
Section 4.

3. PROPAGATORS
In this section we discuss the main concepts of the prop-

agators model proposed by Radul and Sussman in 2009 [6],
that we use to address the issues identified in the previous
section. This computational model differs from the conven-
tional programming models in that it allows a variable to ac-
cept values from multiple sources. It is designed as network
of cells and propagators. Cells correspond to the places that
accept inputs from multiple sources and propagators con-
tinuously monitor the cells of interest and produce output
to other cells. Propagators perform specified actions on its
inputs, are asynchronous and stateless.

This computational metaphor implies no individual source
is responsible for computing the value for the variable. We
illustrate the propagator model with an example in Figure 3.
The propagator P consumes values from Y and Z cells and
writes its output to the cell X. The advantage of this model
is that source of the final result needs not to be determined
upfront. This means it is possible to build systems whose
information flow depends on how they are used [6].

Allowing multiple sources for a single value comes with
consequences such as determining which source to consider
for the value. For example, for the cell X we must decide
between Y and Z cells. A concrete practical example of us-
ing this propagation computational model is explained in [6]
where the height of the building is calculated using two in-
dependent formulas that take on as inputs initial estimates.
The propagation model proposes a number of techniques for
dealing with the issue of determining the source to consider
for the final result, that we discuss below:

Merging This is where results from multiple sources can be
combined to yield an aggregate answer. For instance
by taking an average for integer values or intersection
for interval results. One limitation of this technique is
that different sources need to wait for each other.

Multidirectional Computation This technique enables
the refinement of the information contained in the cells.
Once the final result is computed, information can
propagate backwards to refine some of the initial in-
puts. For example, the final result of the height of the
building calculated using two formulas can be used to
improve the accuracy of the initial estimates.

Dependencies Decorations Rather than perform a merge
on the multiple sources, a record justification (“deco-
ration”) is provided for each result. Cells can contain
implementation of how to deal with information as it
comes in from multiple sources based on the decora-
tions. For instance, the initial estimates to the for-
mulas of calculating the height of the building can be
annotated with the value representing the error mar-
gin. By producing the height result from each formula
along with extra information such as the error margin,
the user can decide which final result to consider.

Our model is based on these techniques to determine the
final dependency and to redefine dependencies based on con-
text information. The next section presents our proposed
context-aware propagators model.

4. CONTEXT-AWARE PROPAGATORS
We propose our conceptual model, context-aware prop-

agators that is based on the idea of propagator compu-
tational model discussed in the previous section. In our
model, a cell is designed to accept its inputs as context infor-
mation, context-dependent adaptations, and dependencies.
We propose two types propagators (1) context-adaptation
mappings, which given context information outputs the cor-
responding adaptation(s) (2) Dependency definition, which
given a context-dependent adaptations outputs the depen-
dencies between these adaptations. Our model provides an
interface to the COP language such as [4] as an output cell
that contains the adaptations to (de)activate and dependen-
cies between these adaptations. We refer to this cell as the
interface cell.

As multiple adaptations become available, propagators
need to define dependencies that are written to the inter-
face cell to specify the semantics between adaptations. Pro-
viding support for context-aware dependencies implies that
multiple dependency relationships can be available at the
same time. Thanks to the propagator model, the fact that a
variable can take on values from multiple sources enables us
to design the interface cell to accommodate multiple adap-
tation dependencies. This means that multiple dependen-
cies can coexist even if they contradict. In such case one
dependency must be selected. We discuss the dependency
selection techniques in the remainder of this section.

4.1 Propagator Based Dependency Selection
To address all these issues of deciding applicable adapta-

tions and dependencies from multiple sources, we make use
of the propagator model techniques as discussed below:

Merging The interface cell may hold extra information about
the dependencies to perform the merging operation on
adaptations or dependencies as they come in from mul-
tiple sources. For example in case of non-contradicting
dependencies the merging operation can simply be a
composition. Existing Context-Oriented Programming

fire A

fire B

C/Co2

C/Foam

Co2

Foam Co2 Foam

Co2 Foamx
Depedency

Figure 4: Context-aware propagators

(COP) languages such as ContextL [4] provide some
support for composing adaptations.

Multidirectional Computation Using this technique, ex-
isting dependencies and adaptations can be dynami-
cally updated by propagating backward the network.
In our model we realise that backward propagation
may need to be delimited to some scope to specify
when and what cells that can be updated to avoid in-
consistencies. For example in the CaFSS scenario it is
not possible to overwrite fire.

Dependencies Decorations Using this technique, the prop-
agator annotates each dependency information such as
the dependencies that can coexist with each other, or
the context when it becomes applicable. Then the in-
terface cell can perform dependency selection based on
this extra information. This may also be useful in cases
where the user interaction is required. For example, by
outputting the applicable dependencies and letting the
user take the decision.

4.2 Example
To illustrate the concrete application context-aware prop-

agators to adaptation selection, we consider the CaFSS sce-
nario introduced in Section 2. Figure 4 shows the complete
network of the propagator model that depicts the applica-
tion of context-aware propagator to the CaFSS. The cells
are represented as circles and contain context information,
fire class A and fire class B. The propagators are represented
as rectangular boxes. For example c/CO2 propagator con-
tains mappings between class of fire and the adaptation.
This implies that when fire class B input is received, the
c/CO2 propagator outputs CO2 adaptation. The cells CO2

and Foam contain the actual adaptations which are also in-
puts to other propagators. The propagator CO2-x->Foam
defines an exclusion dependency between CO2 and Foam
adaptations, while the CO2->foam propagator defines the
an inclusion dependency between CO2 and Foam adapta-
tions. The final cell of this propagator is an interface to the
actuator and contains the final dependency or set of adapta-
tions to be activated or deactivated. Therefore, the decision
of which adaptations to (de)activate is contained in the cell
labelled dependency.

5. CONCLUSION AND FUTURE WORK
This paper focusses on language support for context-aware

dependencies between adaptations. Our model aims at pro-
viding explicit means of expressing dependencies between
adaptations, making sure that these dependencies are not
always tied, and dealing with contractions in cases of mul-
tiple dependencies. We propose our ongoing work called
context-aware propagators which is based on the propagator

computational model. Using this model multiple dependen-
cies between adaptations can coexist at the same time even
if the contradict. Our model relies on multidirectional and
dependency decorations techniques to deal with contractions
and selecting the applicable dependencies.

This work is still in its early stages and we are currently
investigating on what further refinements that need to be
performed on design and implementation of the propagator
model so as to provide support for context-aware dependen-
cies. For example, we envision that the propagators mul-
tidirectional technique needs to include ways to limit the
scope of backward propagation to avoid inconsistencies such
as overwriting context information. In our future work we
would like extend our model to work in a distributed set-
ting where dependency selection is through harmonisation
of cells and propagators on multiple hosts.

6. ACKNOWLEDGEMENTS
This work was partially funded by the Research Founda-

tion - Flanders (FWO), the MoVES project, and the Vari-
Bru project of the ICT Impulse Programme of the Institute
for the encouragement of Scientific Research and Innovation
of Brussels (ISRIB). The authors would also like to thank
Jorge Vallejos and Pascal Costanza for the very fruitful dis-
cussions.

7. REFERENCES
[1] M. Baldauf and S. Dustdar. A survey on context-aware

systems. International Journal of Ad Hoc and
Ubiquitous Computing, page 2004, 2004.

[2] B. Desmet, J. Vallejos, P. Costanza, and W. D. Meuter.
Context-oriented domain analysis.

[3] J. Hähner, C. Becker, and P. J. Marrón. Consistent
context management in mobile ad hoc networks. In GI
Jahrestagung (1), pages 308–313, 2004.

[4] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125–151–621, 2008.

[5] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. 1990.

[6] A. Radul and G. J. Sussman. The (abridged) art of the
propagator. In ILC 2009: Proceedings of the
International Lisp Conference 2009. ACM, 2009.

[7] J. Vallejos, P. Ebraert, B. Desmet, T. V. Cutsem,
S. Mostinckx, and P. Costanza. The context-dependent
role model. In J. Indulska and K. Raymond, editors,
7th IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS ’07),
Lecture Notes in Computer Science, pages 277–299.
Springer-Verlag, June 2007.

