
A Programming Language Approach for Context-Aware
Mashups

Jorge Vallejos, Jianyi Huang, Pascal Costanza, Wolfgang De Meuter, Theo D’Hondt
Software Languages Lab, Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{jvallejo,jihuang,pascal.costanza,wdmeuter,tjdhondt}@vub.ac.be

ABSTRACT
This paper focuses on mashup techniques as a solution for
dynamic service composition in the Internet field. Exist-
ing mashups approaches provide simple means for efficient
service interaction thanks to the use of asynchronous invo-
cation schemes. However, the services are statically selected
and wired to the mashups which significantly hinders the
reusability. In addition, the asynchronous service invoca-
tions lead to fragmented mashup definitions obscuring the
mashups’ tasks. In this work we propose a programming
language framework, called Dymac, that supports the de-
velopment of context-aware mashups with the abilities of
abstracting web services by type, performing dynamic ser-
vice selection based on the context of use, and supporting se-
quential task-driven composition. With this framework web
services become easier to maintain, web service selection is
dynamic so that it is more adapted to the environment and
the composition process of mashups is sequential and task
explicit.

1. INTRODUCTION
The Internet is currently facing two evolutionary changes.
In terms of software, the Internet has evolved from an infor-
mation providing media to an interactive service platform,
known as the Web 2.0. This platform enables the users to
contribute with their own services to the Web, and more
interestingly, to compose new services out of existing ones,
called mashups. In terms of hardware, the computers con-
nected to the Internet can now be integrated into everyday
devices (such as mobile phones or home/office appliances),
forming networks that dynamically change configuration as
the users move about and the devices become (un)available.
Software services in this setting are expected to react to
such changes and adapt their behaviour accordingly. This
dynamic condition entails a number of issues for today ser-
vice composition techniques such as mashups, as they lack
the appropriate support to deal with the effects of unreli-
able connections on the services. In these approaches, the
unexpected disconnection of the devices hosting the services

used in a mashup can lead to execution deadlocks, or in
the best case, to exceptions. However, in the new hardware
setting such disconnections can be just temporary, i.e. the
devices can reconnect in a later point in time and resume
the services [15]. Additionally, for the cases of permanent
disconnections, the explicit reference to concrete services in
mashup definitions prevent the disconnected services from
being replaced with others providing the same functionality.

1.1 Event-driven Programming for Mashup
Development

In this work, we investigate event-driven programming [14]
as a programming model that can enable mashups to cope
with the issues of dynamic networks described above. In
event-driven programming, the interaction between the ser-
vices, as well as the changes in their environment, are rep-
resented as events which are asynchronously exchanged and
processed. Programs in this model are written in a reac-
tive style, requiring the developers to perform some sort of
continuation management to handle the events (e.g. callback
functions, listener objects, etc.). An example of event-driven
programming in the Web 2.0 are AJAX asynchronous re-
quests [2]1. Event-driven programming enables the mashup
developers to manually deal with changes in the availability
of the services at the program level. However, this model suf-
fers from the problem of inversion of control [4]: the control
flow of the programs is broken up according to non-blocking
calls into several callbacks. Such fragmented control flow is
particularly awkward for mashups as it obscures the tasks
they accomplish.

To reconcile event-driven programs execution with the se-
quential task definition style required for mashups, we pro-
pose our ongoing work on an object-oriented programming
language framework for dynamic mashups development, called
Dymac. Dymac enables the mashups to become context-
aware, i.e. to be able to dynamically adapt their tasks to
the dynamics of the context of use, by promoting three de-
sign principles:

• To define mashups in terms of service types which
group the services providing the same functionality,
and generic functions that abstract away implementa-
tion details of the interaction with concrete services,
making the task of the mashups more readable.

1Although their original raison d’être is rather related to
increasing responsiveness.



• To dynamically select the services used in mashups
based on context conditions such as service availability
or user preferences.

• To feature a sequential programming style while in-
ternally executing the programs in event-driven man-
ner. This allows structuring the mashups in a way does
not require to explicitly deal with continuation-passing
schemes (like callbacks).

We illustrate the use of Dymac by presenting the develop-
ment of a simple yet representative mashup in the proto-
typical implementation of this framework in our Lisp-based
research language platform, called Lambic [13]. At the end
of this paper, we discuss how the properties of Dymac can
be reused in other mashup development approaches.

2. A CONTEXT-AWARE MASHUP
Consider the scenario in which a user wants to reach cer-
tain destination and needs to know where to take the public
transport. The mashup defined for this case, called get-me-

there in this paper, requires the current user’s location to
pass it as parameter to the public transport service and get
the location and timetables of the nearby stops, which are
finally displayed in a map of a map service. Figure 1 shows
an implementation of this mashup using Dymac (the used
syntax is further explained in Section 4):

; GET-ME-THERE MASHUP
(defun get-me-there (destination)
(let ((my-location (get-location location-service)))
(if my-location
(let ((stops (get-stops transport-service

from: my-location
to: destination)))

(if stops
(display-map map-service

center: my-location
markers: (list destination stops)))))))

Figure 1: Definition of the get-me-there mashup in
Dymac.

In the above figure, the get-me-there mashup is represented
as a function with the user’s destination as argument. Its
body mainly consists of the invocations of the get-location,
get-stops, and display-map functions. The services indi-
cated as parameters in these functions (location-service,
transport-service and map-service) are not coupled to
particular services but indicate the type of service that can
handle such invocations. The parameters and return val-
ues of services of the same type are treated indistinctly. As
such, the user’s location can, for instance, be obtained from
a GeoIP web service (e.g. MaxMind [9]), or from a GPS
available in the user’s environment. The result of the invo-
cation to either of these services is wrapped in a location
object which can be passed as parameter to the get-stops

and display-map functions.

The concrete services used in the get-me-there mashup are
dynamically selected at execution time according to the user
preferences and the services’ availability. For instance, in the
case of the location service, the user may prefer the GPS over
the GeoIP service as the former is more precise. However,

if the GPS is not available, the GeoIP service is invoked
instead.

Finally, each of the invocations to the services in the get-

me-there mashup is asynchronously processed. Still, no call-
backs are required to handle the results. This is implicitly
done by Dymac enabling the mashups to be defined using a
standard sequential programming style.

In the remainder of this paper, we explain how each of these
features are supported by Dymac.

3. THE DYMAC FRAMEWORK
To support the development of context-aware mashups, Dy-
mac promotes three design principles: type-based service
composition, dynamic service selection and sequential event-
driven execution.

3.1 Type-based Service Composition
In Dymac, services providing the same functionality are
grouped and classified with the same type. A type is a
first-class entity (e.g. an object) that can be directly used
in mashups, acting as generic handler for the requests to
the services the type represents. Using types, mashups are
less vulnerable to changes in the services’ availability. For
this to work, all the services of a type, and the type itself,
are provided with a similar interface. Then, the type and
its services are structured in a way similar to the chain-of-
responsibility pattern [1], where the type handles a request
by successively delegating it to the services until the result
is obtained. The parameters and return values of the func-
tions are also abstracted away in types as a way to deal with
the current diversity of data formats.

Mediating Functions
Type-based service composition also requires the definition
of mediating functions2 which take care of converting the
generic requests and values into concrete invocations and
data used by the services. With this, we introduce a strati-
fication in the definition of mashups, where concrete service
invocations and data are handled in a different level than
the one of the composition.

3.2 Dynamic Service Selection
In Dymac, the concrete services used by a mashup are se-
lected according to its execution context. Thus far, this
context is represented by the availability of the services and
the user preferences. While the former is associated to the
changes in the connection of the services’ hosting devices
(as explained in Section 1), the latter determines the or-
der in which the type’s generic handler invokes the member
services.

Dealing with Disconnections
In Dymac, there are two ways to deal with service disconnec-
tions – at the discovery and communication levels – which
are inherited from the Lambic language [13] and originally
proposed in the AmbientTalk language [15]. At the level of

2In a similar aim as the data mediation activity described
by Maximillien et al in [8].



the discovery, Dymac provides a number of callbacks to spec-
ify actions upon the discovery, disconnection and reconnec-
tion of services. Such callbacks are used to keep the types’
list of available services up to date (by adding or removing
services).3 At the level of the communication, Dymac relies
on a time-based network failure handling mechanism. In-
vocations can be defined with a timeout that delimits the
period of time to receive the response. This time interval
is respected even if disconnections occur in between. A dis-
connection is considered permanent only after the timeout
is reached, in which case an exception is raised. By default,
Dymac handles timeout exceptions by delegating the invo-
cation to next service in the list of a type.

User-driven Service Ordering
Dymac lets the mashup developers to determine the order
of the services of a type by providing a priority algorithm
for each function. By default, this algorithm is executed
when services are added or removed, but also each time the
algorithm is modified, enabling the priorities to be changed
for particular invocations.

3.3 Sequential Event-driven Execution
Dymac features a sequential event-driven execution process
based on the Lambic adaptation of the communicating event
loops model for concurrency and distribution of AmbientTalk [15]
and E [11]. We briefly highlight the features of this adap-
tation that are relevant for Dymac and refer the reader to
dedicated references [13] for further details.

Asynchronous Remote Invocations and Return Values
In Dymac, a function invocation is synchronously processed
only if it occurs within the device that owns the requested
service. Inter-device computations are possible by means of
asynchronous remote invocations. The return values of such
invocations are handled by means of futures (also known as
promises [7]). A future is an object created at the device
from where the remote service is invoked, acting as place-
holder for the result of the invocation. Once the return value
is computed, it is communicated to the future; the future
is then said to be resolved with the value. Originally this
asynchronous communication scheme uses a reactive pro-
gramming style, with explicit callbacks in the programs to
express actions that depend on the results received by the
futures. However, in Dymac we have extended this model to
combine event-driven execution with a sequential program-
ming style. For the sake of space and focus, in this paper
we only explain the extension that concerns the invocation
of web services.

The Sequential Event-driven Execution Process
The sequential event-driven execution process of Dymac re-
lies on two principles: every invocation returns a future as
result and every invocation can receive futures as param-
eters. The future returned by an invocation is implicitly
handled which means that function definitions can be obliv-
ious to it. The use of futures as parameters of an invocation
causes the creation of an observer (also a future) that is
notified when all the parameter futures are resolved with a

3This automatic mechanism does not prevent the developers
or users from adding or removing services manually.

value. Then, the futures are replaced with the values and the
invocation is executed. Finally, the result of the execution
resolves the future created for the invocation. No threads
are blocked or created during this process, execution is en-
tirely event-driven, where “events” are either incoming re-
mote invocations or replies to earlier invocations containing
the results for unresolved futures.

For web service invocations, we define a send operation that
performs an AJAX asyncrhonous request and returns a fu-
ture which is resolved with the result of the AJAX request.
Therefore, web service invocations can be seamlessly inte-
grated to the sequential event-driven execution process de-
scribed above.

4. BUILDING CONTEXT-AWARE MASHUPS
IN DYMAC

We now briefly discuss some details of the current implemen-
tation of the Dymac framework Lambic. Lambic is an exten-
sion to the Common Lisp Object System (CLOS). In CLOS,
object-oriented programs are written in terms of function in-
vocations rather than messages exchanged between objects
(like in Java). Yet, both approaches result in the invocation
of a method (or a chain of methods indicated in class inheri-
tance relationships). For the sake of simplicity, in this paper
we assume that the first argument of a function corresponds
to the receiver of the invocation.

In this implementation, we use the Hunchentoot [16] Com-
mon Lisp web server as our mashup server. Thus far, Dymac
supports the interaction with web services only using REST
APIs. In this section, we illustrate the use of Dymac by
building incrementally one of the functions used in get-me-

there mashup introduced in Figure 1. In its current version,
this mashup combines the services of the MaxMind [9] GeoIP
service, a prototypical version of a public transport service
developed at our lab, and Google Maps [3].

4.1 Building a Function
The first step a developer should do in order to add a new
functionality to the Dymac framework is to define the a ser-
vice type (if it is not already defined) and the corresponding
function. For instance, the code below shows a simplified
version of the implementation of the get-location function
for the location-service type, used in the get-me-there

mashup.

; LOCATION-SERVICE TYPE DEFINITION
(defclass location-service (service) ())

; GET-LOCATION FOR LOCATION-SERVICE TYPE
(defmethod get-location ((this location-service))
(foreach (service (get-services this))
(let ((result (try-catch (get-location service)

(timeout-exception () nil))))
(if result
(return result)))))

Figure 2: Definition of the get-location function for
the location-service type.

This code shows the definition of the location-service

type as a class (with the Dymac service class as superclass),



and the get-location function as a method specialised on
the location-service class.4 This method iterates over the
services of the type invoking get-location on each service.
This invocation is put inside a try-catch expression so that
timeout exceptions thrown by the time-based network fail-
ure handling mechanism (described in Section 3.2) can be
captured. In this example we assume a standard timeout
stored in a global variable.

The structure of the body of the methods defined for service
types is likely to be the same in all the cases (only varying in
the method they invoke), and as such it can be automatically
generated.

4.2 Defining the Proxy to the GeoIP service
Once the function is defined at the service type level, the
next step is to add the concrete services and their mediating
functions. In cases like web services, this also means to
define proxies at the mashup server. The code below shows
an implementation of the proxy to the GeoIP web service.

; PROXY TO GEOIP SERVICE
(defclass geoip-proxy (location-service)

((cached-locations initial-value: (make-hash-table)
getter: get-cached-locations)))

; ORIGINAL METHOD (mediating function)
(defmethod get-location ((this geoip-proxy))

(send ... complete AJAX request ... ))

; AROUND METHOD
(defmethod get-location :around ((this geoip-proxy))

(let ((location (get (get-cached-locations this)
system-ip)))

(if (not location)
(begin
(setq location (call-next-method)))
(put (get-cached-locations this)

system-ip location))))
location))

; ADDING GEOIP PROXY TO SERVICE TYPE
(let ((geoip-service (make-instance ’geoip-proxy)))

(add-service location-service geoip-service))

Figure 3: Definition the proxy for a GeoIP service.

In this implementation we enable the GeoIP proxy to cache
geolocations to reduce the number of requests to the GeoIP
web service. The service is accessed only if the there is
no cached geolocation that corresponds to the requested IP.
Note that in this case the location can either be obtained
remotely (using an asynchronous AJAX request) or locally
(using a standard synchronous access to the cache). While
this can be particularly challenging for languages featur-
ing different models for local and remote interactions, as
it may lead to inconsistencies (e.g. if the wrong communi-
cation model is used), the implementation of this case in
Dymac does not represent any special hazard. We include
the caching functionality inside a (standard Common Lisp)

4In Dymac, as in Lisp, classes and methods are defined sep-
arately. A method can represent the behaviour of a class by
indicating one of its arguments with the type of the class. In
the method signature of the example, read (this location-
service) as “let the this (receiver) argument be of class
location-service”.

around method for get-location. The :around annotation
in the second definition ensures that this method is exe-
cuted before the original get-location method presented in
the previous example. In this definition, the geolocation is
first looked up in the cache of the GeoIP proxy (represented
by the hash table stored in the cached-locations field of
the geoip-proxy class). Only if this location is not found,
the original get-location method is invoked by means of
the Common Lisp call-next-method function (which cor-
responds to a super call).

5. DISCUSSION AND RELATED WORK
In this paper, we identify a number of issues for today mashup
techniques caused by the new hardware phenomena. Al-
though existing approaches present simple means to com-
pose services, they lack the support to enable the mashups
to properly react to changes in their environment (such as
permanent or transient disconnections). We then introduce
our ongoing work, called Dymac, which supports the devel-
opment of context-aware mashups by providing type-based
service composition, dynamic service selection and sequen-
tial event-driven execution. Currently, there are several pro-
gramming language frameworks that acknowledge the ef-
fects of dynamic environments on mashups (like HOP [12],
Orc [5], Flapjax [10] and Ubiquity[6]). However, none of
these approaches feature the three properties proposed in
Dymac. Still, a further study of the state of the art for
dynamic mashup development is an important part of our
present work.

Ubiquity[6] is a javascript-based add-on in Firefox that takes
the browser as platform of dynamic mashups which are in-
voked by means of natural-language commands. Ubiquity
lets the users dynamically determine the place (a web page)
where the result of the mashup is presented. However, it
still requires for the mashup definitions to make references
to concrete services. HOP [12] is a programming language
for building dynamic web services which also provides an ab-
straction layer for service invocation. Requests to web ser-
vices are possible using the with-hop construct and the re-
sult is handled inside a lambda that acts as callback. Orc [5]
is a programming language with explicit support for service
orchestration. The mashup definition in this language is
simple as the invocations are abstracted and represented by
keywords, and service composition is specified with a small
set of combinators. Flapjax [10] is a programming language
that proposes a unified event-driven programming style for
local and remote computations. Callbacks are avoided by
adopting a functional reactive programming model based
on data flows. This model also helps to achieve a separation
of concerns as the one promoted by Dymac.

Acknowledgements
This work has been supported by the VariBru project of the
ICT Impulse Programme of the Institute for the encourage-
ment of Scientific Research and Innovation of Brussels (IS-
RIB), and the MoVES project of the Interuniversity Attrac-
tion Poles Programme of the Belgian State, Belgian Science
Policy.

6. REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable



Object-Oriented Software. Addison-Wesley, 1995.

[2] J. J. Garrett. Ajax: A new approach to web
applications.
http://adaptivepath.com/ideas/essays/archives/000385.php,
February 2005. [Online; Stand 18.03.2008].

[3] Google Inc. Google Maps. http://maps.google.com.

[4] P. Haller and M. Odersky. Event-based programming
without inversion of control. In Proc. Joint Modular
Languages Conference, volume 4228 of Lecture Notes
in Computer Science, pages 4–22. Springer, 2006.

[5] D. Kitchin, A. Quark, W. Cook, and J. Misra. The
Orc programming language. In D. Lee, A. Lopes, and
A. Poetzsch-Heffter, editors, Formal techniques for
Distributed Systems; Proceedings of
FMOODS/FORTE, volume 5522 of LNCS, pages
1–25. Springer, 2009.

[6] M. Labs. Ubiquity.
http://labs.mozilla.com/projects/ubiquity, 2009.

[7] B. Liskov and L. Shrira. Promises: Linguistic Support
for Efficient Asynchronous Procedure Calls in
Distributed Systems. In Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language
design and Implementation, pages 260–267. ACM
Press, 1988.

[8] E. M. Maximilien, A. Ranabahu, and K. Gomadam.
An online platform for web apis and service mashups.
IEEE Internet Computing, 12(5):32–43, 2008.

[9] MaxMind. MaxMind GeoIP.
http://www.maxmind.com/app/ip-location, 2009.

[10] L. Meyerovich, A. Guha, J. Baskin, G. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi.
Flapjax: A programming language for ajax
applications. Technical report, Brown University,
April 2009.

[11] M. Miller, D. E. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in E as plan
coordination. In Symposium on Trustworthy Global
Computing, volume 3705 of LNCS, pages 195–229.
Springer, 2005.

[12] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a
language for programming the web 2.0. In OOPSLA
’06: Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems,
languages, and applications, pages 975–985, New York,
NY, USA, 2006. ACM.

[13] J. Vallejos, P. Costanza, T. Van Cutsem, and W. De
Meuter. Reconciling Generic Functions with Actors. In
ACM SIGPLAN International Lisp Conference,
Cambridge, Massachusetts, 2009.

[14] T. Van Cutsem, S. Mostinckx, Elisa Gonzalez Boix,
J. Dedecker, and W. De Meuter. AmbientTalk:
Object-Oriented Event-driven Programming in Mobile
Ad hoc Networks. In XXVI International Conference
of the Chilean Computer Science Society (SCCC).
IEEE Computer Society, 2007.

[15] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix,
J. Dedecker, and W. De Meuter. Ambienttalk:
object-oriented event-driven programming in mobile
ad hoc networks. In Proceedings of the XXVI
International Conference of the Chilean Computer
Science Society (SCCC 2007), pages 3–12. IEEE
Computer Society, 2007.

[16] E. Weitz. Hunchentoot Common Lisp web server, 2005
- 2009.


