
Reconciling Generic Functions with Actors
Generic Function-driven Object Coordination in Mobile Computing

Jorge Vallejos Pascal Costanza Tom Van Cutsem Wolfgang De Meuter Theo D’Hondt
Programming Technology Lab – Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{jvallejo, pascal.costanza, tvcutsem, wdemeuter, tjdhondt}@vub.ac.be

Abstract
Event-driven programming is recognised as an appropriate
paradigm for coping with dynamically reconfigurable envi-
ronments such as mobile computing. This paradigm – es-
sentially described in the actor model – has been prop-
erly aligned with message-passing method invocation sys-
tems in object-oriented programming. However, the combi-
nation with the generic function-based system still remains
an issue, due to the mismatch between the actor’s message-
sending semantics and generic function invocations. Exist-
ing approaches circumvent this problem by (re)introducing
a “send” operation which considerably diminishes the power
of generic functions. In this paper, we describe an object-
oriented programming model for distribution and concur-
rency, called Lambic, that reconciles generic functions and
event-based programming. In this model, events are repre-
sented as asynchronous function invocations which are se-
quentially processed by event loops dispatching to the ap-
propriate generic functions. We validate this approach by im-
plementing a number of programming language abstractions
for event-driven service coordination.

Keywords Generic functions, Actors, Mobile computing,
Common Lisp, Lambic

1. Introduction
Event-driven programming has increasingly gained popular-
ity among emerging distributed computing paradigms such
as mobile computing (Van Cutsem et al. 2007b). In this
programming style, software services communicate with
each other by means of events. In the object-oriented lit-
erature, the essence of event-driven programming has been
studied through the functional formalism of concurrency

known as the actor model (Agha 1986), in which events are
modelled as messages asynchronously exchanged among
software entities (originally actors, but also objects and
components in later extensions). In the past, actor-based
concurrency and distribution have been successfully com-
bined with object-oriented programming by aligning the
message-based communication model of actors with the
message-passing method invocation model of objects ini-
tially proposed in Smalltalk (Varela and Agha 2001; Miller
et al. 2005; Van Cutsem et al. 2007b). However, the com-
bination with the generic function-based method invocation
style – like the one featured in CLOS – remains still an
issue. In the message-passing model, objects are directly
addressed by sending messages to them which conforms
the message-sending semantics of actors. However, in the
generic function-based model only functions can be directly
addressed. Objects can only be referenced as arguments in
function invocations.

It appears that one is forced to abandon the generic
function metaphor if one wants to express event-driven
concurrency and distribution. Existing Common Lisp lan-
guage extensions have acknowledged this problem by in-
troducing message-passing semantics into the language,
e.g. a single-dispatching “send” operation (Harbo 2008;
Gerrits 2005; Gorrie 2002; Hotz and Trowe 1999). How-
ever, if the non-distributed part of a service is written us-
ing generic functions, the overall service is then forced to
combine the two different paradigms, which is far from
trivial. Futhermore, such a combination seriously dimin-
ishes the benefits of generic functions. As Peter Seibel
states in (Seibel 2005), by separating methods from classes,
generic functions turn method dispatching inside out com-
pared to message-passing. As such, programmers can spe-
cialise methods on multiple parameters (multiple dispatch),
work with multiple inheritance in a much more manageable
way, and use declarative constructs to control the method
combination (auxiliary methods).

In this work, we present an actor-based object-oriented
programming model that reconciles event-driven program-
ming with generic functions for concurrency and distribu-

tion. The main idea of this model is to represent event notifi-
cations as asynchronous generic function invocations which
are sequentially processed by the actors dispatching to the
appropriate generic functions.

We validate our work by implementing an event-driven
object-oriented coordination model for mobile computing
defined in (Van Cutsem et al. 2007b), which was origi-
nally developed for message-passing systems. We demon-
strate that in our implementation objects discover, commu-
nicate and react upon changes in their network environment
without requiring single-dispatch operations.

2. Integrating Actors and Generic Functions
In this section, we discuss the benefits of event-driven con-
current and distributed programming by describing its man-
ifestation in the AmbientTalk programming language (Van
Cutsem et al. 2007b). The design decisions implemented
in this language have significantly influenced the require-
ments for our model based on events and generic func-
tions, as we explain in Section 2.3. We further review other
approaches that combine event-driven programming and
object-orientation at the end of this section.

2.1 Actors
The actor model (Agha 1986) is a concurrency model that
represents concurrent activities as separate agents or ac-
tors. Actors have been conceived as a functional model,
but extensions have been formulated that combine the ac-
tor paradigm with imperative programming. When we refer
to actors throughout the rest of this paper, we consider them
as concurrent processes that share no state and communicate
strictly by means of asynchronous message passing. Each
actor has a mailbox, which is a queue that buffers the mes-
sages already received but not yet processed by the actor.

Actors are of interest to us because they provide a clean
abstraction of a distributed system. In a distributed system,
processes generally have no shared state and communicate
by means of network messages. Furthermore, even on a
local machine, the fact that actors cannot synchronously
access one another’s state is useful because it prevents race
conditions on that data.

2.2 Combining Objects and Actors
In early actor languages (e.g. Lieberman’s ACT-1 lan-
guage (Lieberman 1987)), all values are represented as ac-
tors. While this enables a flexible and uniform programming
model, it also makes local sequential, non-distributed com-
puting more complicated than strictly necessary. Recently,
the E (Miller et al. 2005) and AmbientTalk (Van Cutsem
et al. 2007b) programming languages have introduced an
execution model that allows objects and actors to gracefully
co-exist. In these languages, actors are not represented as
objects but rather as containers of regular objects. Each ob-
ject is owned by an actor. An actor can own multiple objects,
but each object is owned by exactly one actor.

Actors define boundaries of concurrent execution around
groups of objects. Two objects owned by the same actor can
communicate synchronously, by means of traditional mes-
sage passing. However, objects may refer to objects owned
by other actors. Object references that span different actor
boundaries are named far references and only allow asyn-
chronous access to the referenced object. Any message sent
to a receiver object via a far reference is enqueued in the
mailbox of the actor that owns the receiver object and pro-
cessed by the owner itself. Actors are event loops: they take
messages one by one (i.e. sequentially) from their mailbox
and dispatch them to the receiver object by invoking its ap-
propriate method. Figure 1 depicts actors and objects in Am-
bientTalk.

A B

Actor Actor

Object
Far reference

Message from A to B

Event
loop

Message
queue

Figure 1. Actors in AmbientTalk

E and AmbientTalk combine the actor primitives to send
and receive asynchronous messages with object-oriented
message passing. For example, E and AmbientTalk do not
feature an explicit receive statement to receive messages
from remote objects. Rather, message reception is repre-
sented simply as method invocation. An object can thus
accept any messages for which it defines a corresponding
method.

E and AmbientTalk allow asynchronous message sends
to return values by means of futures (Halstead, Jr. 1985),
also known as promises (Liskov and Shrira 1988). A future
is a placeholder for the return value of an asynchronous
message send. Once the return value is computed, it replaces
the future object; the future is then said to be resolved with
the value.

To make the discussion more concrete, consider the fol-
lowing example. Assume messenger represents a far ref-
erence to a remote object that represents an instant messen-
ger application (further explained in the next section). The
following code shows how to query this instant messenger
for its user’s username:

def f := messenger<-getName();
when: f becomes: { |val| display(val) }

The <- operator denotes an asynchronous send of the
message getName to the remote messenger object. This
operation returns a future f. In AmbientTalk, an object
may react to a future becoming resolved by registering an
observer (a closure) that will be called with the resolved
value (val), when the future has become resolved. To be
able to respond to a getName message, it suffices for the

messenger object to define a getName method as fol-
lows:

def createMessenger(name) {
object: {
def getName() { name }

}
}

Note that the return value of the getName method is
used to resolve the future that was created as a result of the
messenger<-getName() message send.

2.3 Actors and Generic Functions United
The combination of event-driven and object-oriented pro-
gramming implemented in AmbientTalk strongly relies on
the message-passing method invocation model – events are
aligned with messages. Using generic functions, message
passing could be easily simulated by specialising the meth-
ods of generic functions on a single “receiver” parameter
(single dispatch), as in NetCLOS (Hotz and Trowe 1999) or
CL-MUPROC (Harbo 2008), for example. However, as we
previously explained, this would severely diminish the ben-
efits of the generic function-based style. To overcome this
problem we introduce an event-driven object-oriented pro-
gramming model that reconciles actors with generic func-
tions. We have implemented this model as an extension to
CLOS, called Lambic. In the remainder of this paper we re-
fer to the concurrency model and to Lambic interchangeably.

Lambic is built around three key features: actors as ob-
ject containers, asynchronous method invocations and asyn-
chronous return values. This section describes these fea-
tures, but first, we briefly introduce an example used in this
description to illustrate the features.

The Instant Messenger Application Figure 2 shows part
of the implementation in Lambic of an instant messenger
application for mobile ad hoc networks, originally presented
in the AmbientTalk literature (Van Cutsem et al. 2008).
This application features two interfaces (represented by
the methods specialised on the im-local-facade and
im-remote-facade classes) which separate the local
operations of the instant messenger from those that are re-
motely accessible. In this implementation, the local inter-
face defines the talk method that enables the messenger’s
user to send messages to their “buddies” (users recorded
in the buddies hash table), and the remote interface de-
fines the receive method that enables the user to re-
ceive text messages. Both interfaces are subclasses of the
distributable-object class which is the root for all
the classes in Lambic. The last function defines an instant
messenger application. We have omitted the coordination
details required for mobile ad hoc networks. Section 4 shows
the complete version of this function.

Actors as Object Containers
Lambic features a variation of the AmbientTalk’s communi-
cating event loops model. As in AmbientTalk, actors are ob-
ject containers defining boundaries of concurrent execution
for the objects. Event notifications are modelled as asyn-
chronous generic function invocations which are sequen-
tially processed by the actor’s event loop, dispatching to the
appropriate generic functions. Events are then handled by
the corresponding methods in the generic function. Figure 3
depicts the actors in Lambic.

A B

Actor Actor

Object
Far reference

Asynchronous invocation
of ƒG in actor of B

Event
loop

Message
queue

ƒGƒF

Generic
function

m1

m2

m3

method

Figure 3. Actors in Lambic

The following expression shows the way to create actors
in Lambic (using the defactor construct):

(defactor name object*)⇒ actor

For example:

(defactor "im-actor"
local-interface remote-interface)

An actor is defined by indicating the name and the ob-
jects that it will own. As result, a reference to the object rep-
resenting the actor is returned1. The example above shows
the actor used in Figure 2 to represent the instant mes-
senger application. This actor, named “im-actor”, contains
the local-interface and remote-interface ob-
jects, which are instances of the im-local-facade and
im-remote-facade classes respectively.

By default, Lambic provides an actor that represents the
(virtual) machine. This actor contains all the objects that are
not owned by any other actor.

Asynchronous Generic Function Invocations
In our model, standard (synchronous) generic function invo-
cations are only allowed if they occur within the actor that
owns all the objects used as arguments. Inter-actor compu-
tations are possible by means of asynchronous generic func-
tion invocations. A generic function is asynchronously in-
voked by designating an actor as the responsible for its pro-
cessing. This results in scheduling the function invocation in

1 This object is also considered to be owned by the actor

; TEXT-MESSAGE
(defstruct text-message from content)

; LOCAL-FACADE
(defclass im-local-facade (distributable-object)

((username :initarg :username :accessor im-local-facade-username)
(buddies :initarg :buddies :initform (make-hash-table :test #’equal)

:accessor im-local-facade-buddies)))

(defmethod talk (local-facade to text)
(let ((buddy (gethash to (im-local-facade-buddies local-facade))))
(if buddy

(let ((message (make-text-message :from (im-local-facade-username local-facade)
:content text)))

(in-actor-of buddy (receive buddy message) :without-future)
(format t "Message to ˜D: ˜D˜%" to text))

(format t "Unknown buddy: ˜D˜%" to))))

; REMOTE-FACADE
(defclass im-remote-facade (distributable-object)

((username :initarg :username :accessor username)))

(defmethod receive (remote-facade message)
(format t "Message from ˜D: ˜D˜%" (text-message-from message)

(text-message-content message)))

; FUNCTION TO CREATE A INSTANT MESSENGER ACTOR
(defun create-instant-messenger (username)
(let ((local-facade (make-instance ’im-local-facade :username username))

(remote-facade (make-instance ’im-remote-facade :username username)))
(defactor "im-actor" local-facade remote-facade)
...
local-facade))

Figure 2. Definition of an instant messenger application in Lambic

the event queue of the actor. The following expression illus-
trates an asynchronous function invocation:

(in-actor-of object function-invocation)⇒ future

For example:

(in-actor-of messenger (username messenger))

In Lambic, neither actors nor objects can receive mes-
sages directly. In order to select the actor that should pro-
cess an asynchronous function invocation, a programmer has
to supply a reference to an object contained in the targeted
actor. Similar to AmbientTalk, objects in Lambic are ref-
erenced from outside their actor’s boundaries by means of
far references.2 This model enables objects to be serialised
as far references by extending the default behaviour of ob-
jects. Thus, an asynchronous function invocation can be read
as “process this function invocation in the actor of this ob-
ject”. The example above corresponds to the translation of

2 In Lambic, the serialisation semantics of objects (to enable ob-
jects to be distributed as far references) are specified in the
distributable-object class.

the AmbientTalk message that queries for the name of the
instant messenger’s user, described in Section 2.2. In this
asynchronous function invocation, messenger is a far ref-
erence to the remote interface object of a remote messenger
application. By passing this far reference as the first argu-
ment to the in-actor-of form, we ensure that the invo-
cation to the username accessor method (defined in the
im-remote-facade class) is processed by the actor that
contains the remote interface object.

Note that this invocation corresponds to a “send” opera-
tion at the actor level which we claimed incompatible with
generic functions. However, in our case this operation does
not conflict with the generic function machinery as methods
are only specialised on objects, not on actors. The only role
of actors is to prevent concurrent invocations using the same
set of objects.

Asynchronous Return Values
By default, an asynchronous generic function invocation re-
turns a future as result. A future is an object created at the

actor from where the function is invoked, that acts as place-
holder for the result of the invocation. Observers can be de-
fined to express actions that depend on the result by means
of the following expression:

(when-resolved future lambda)⇒ future

For example:

(when-resolved
(in-actor-of messenger (username messenger))
(lambda (name)
(format t "Buddy name: ˜D˜%" name)))

In this expression, the lambda represents the action
to be executed once the future is resolved with the result.
when-resolved does not block the actor’s event loop (to
display the name of the messenger’s user in the example).

Asynchronous generic function invocations may also in-
dicate the future object that should be resolved with the
result (by using the :with-future keyword argument).
Conversely, one-way invocations (without result) can be ex-
pressed by including the keyword :without-future. In
such a case, the invocation does not return any value. The
latter is the case of the asynchronous invocation inside the
body of the talkmethod of the im-local-facade class
in Figure 2:

(in-actor-of buddy (receive buddy message)
:without-future)

In this case, we use the :without-future keyword
to indicate that no result is expected for the invocation of the
receive method of a remote messenger application.

To the best of our knowledge, no other Common Lisp
library features each of the above properties. We further
discuss the related work in the next subsection.

2.4 Related Work
In this section, we compare Lambic with existing Common
Lisp libraries for distribution and concurrency. Back in the
80’s and beginnings of 90’s we find a considerable number of
Lisp dialects that supported concurrent (also called parallel)
programming (Halstead, Jr. 1985; Yuen and Wong 1990;
Clamen et al. 1990). However, we do not further review
those approaches as they do not work with generic functions.

NetCLOS
NetCLOS (Hotz and Trowe 1999) is an actor-based exten-
sion to CLOS for parallel computing inspired by the con-
current object-oriented language ABCL/1 (Yonezawa et al.
1986). NetCLOS exhibits a double-layered object model
based on actors (called active objects) and objects (called
passive objects). As in Lambic, NetCLOS introduces mes-
sage passing only to determine the place (the actor) where a
function is evaluated. However, for this to happen the meth-
ods should be specialised on actors. In NetCLOS, a program-
mer has to deal with actors and objects at the same level,

which is not always trivial. For instance, the programmer
must decide which parts of the program behaviour should be
represented as actors and the ones that should be modelled
as objects. In our model, we avoid this problem by allow-
ing the methods to be specialised only on objects and their
classes.

NetCLOS provides three ways to invoke functions by
means of the past, now and future-messages. The kind of
invocation accepted by a generic function is indicated in
its definition (using the :past, :now and :future keywords).
In Lambic, the decision on how a generic function is in-
voked can be made only at invocation time (synchronously
or asynchronously in our case). Furthermore, asynchronous
function invocations are only possible by means of the
in-actor-of language abstraction.

Erlang in Common Lisp
Erlang is an actor-based functional programming language
specially designed for distributed concurrent computing (Arm-
strong et al. 1996). It extends the actor model providing
support for reliable message sending among actors (called
processes) over the network. Upon reception, messages are
handled by means of a pattern matching operation (de-
scribed in receive blocks). At present, there are a number
of libraries that introduce the Erlang’s concurrency model
to Common Lisp, e.g. CL-MUPROC (Harbo 2008), Dis-
tel (Gorrie 2002) and Erlisp (Gerrits 2005) 3. However, in
those libraries we find very little integration with the generic
function-based object-oriented programming style provided
by CLOS. As result of this, the programmers are forced
to reason differently about the distributed and/or concur-
rent part of the program (dealing with message sending and
pattern matching) and the local and non-concurrent part of
the program (dealing with generic function invocations and
method definitions). While in Lambic there is also a differ-
ence between local and remote function invocations, none
of these invocations require extra language support to be
handled (like receive blocks).

Clojure
Clojure (Hickey 2008) is a Lisp dialect that runs on the JVM
with special focus on non-distributed concurrent program-
ming. This language does not support object orientation.
However, it does provide a combination of multimethods
and agents which is comparable to our model. Multimeth-
ods differs from generic functions in that they generalise the
type-based dispatching to one based on any arbitrary func-
tion on the arguments. Agents are like actors in that they sup-
port asynchronous sharing of mutable state between threads.
However, agents do not have an event loop and no blocking
receive (they rely on a thread pool). Functions – called
actions – are dispatched on agents by means of a send oper-

3 Although Erlisp was never finished, we refer to the informal discussion of
its ideas

ation which always return immediately. Dispatch functions
can be associated with multimethods which produces a sim-
ilar result to asynchronous function invocations in Lambic.
Agents can synchronise actions by means of an await oper-
ation which causes the current thread to block until the ac-
tions are performed (unlike observers on futures, which do
not block the actor’s thread).

Distributed Generic Functions
In (Queinnec 1997), Queinnec presents an extension to
generic functions for distributed computing. The main con-
cern in this work is to avoid inconsistent modifications of
generic functions shared by different locations. Implemen-
tations of generic functions in Lisp and Scheme typically
rely on side effects when defining and adding new methods
to existing generic functions, which may lead to race con-
ditions in distributed settings. This is avoided by adopting
a purely functional approach, declaring the generic func-
tions as immutable. Other than that, this model assumes
generic functions to have only one discriminating argument
(the receiver) and an explicit send operation. Furthermore,
this approach is not based on the actor model.

2.5 Summary
In summary, Lambic aligns actors and generic functions as
follows:

• Actors define boundaries of concurrent execution for the
objects. Methods are specialised on objects and their
classes, not on actors.

• Inter-actor computations are realised by means of asyn-
chronous generic function invocations. This kind of invo-
cation differs from standard generic function invocations
in that it has to specify the actor that should evaluate the
function.

• By default, the result of an asynchronous generic function
invocation (if any) is also asynchronously returned to the
actor from which the function is invoked (the future’s
location).

3. Generic Function-driven Object
Coordination in Mobile Computing

We illustrate the benefits of Lambic by implementing a pro-
gramming language model for software service coordina-
tion in mobile computing environments. This implementa-
tion is based on the coordination model of AmbientTalk
which is specially designed for a particular kind of mobile
environment known as mobile ad hoc networks (acronym
MANETs) (Dedecker et al. 2006). In this section, we out-
line the issues of MANETs for service coordination identi-
fied in the AmbientTalk literature, describe the programming
abstractions found in that language, and show their imple-
mentation in Lambic.

3.1 Coordination in Mobile Ad Hoc Networks
MANETs exhibit two hardware phenomena that fundamen-
tally differentiate these networks from traditional, fixed
computer networks (Van Cutsem et al. 2007b). The first phe-
nomenon, known as volatile connections, is related to the
fact that connections between different mobile devices may
be easily interrupted when users move about with their de-
vices. In many cases the disconnection is temporary which
means that the devices may meet again and require their
connection to be re-established. The second phenomenon
present in MANETs is their very little or non-existent fixed
infrastructure (known as zero infrastructure). In such net-
works, services become dynamically available according to
the connection state of the devices that contain them. A ser-
vice that relies on other services in its environment to per-
form its task needs to be aware of the availability of such
devices.

The above phenomena entails a number of requirements
for the coordination of services in MANETs which (Van
Cutsem et al. 2007a) characterises as follows:

Decentralised service discovery Any application that re-
lies on other devices to perform its task should be able to
discover its dynamic network environment. Yet this dis-
covery should not be centralised in a particular machine
(i.e. a fixed server), as there is no certainty that the con-
nection with such machine will be permanently available.
A decentralised service discovery protocol needs to be in-
troduced to enable the services to autonomously act upon
the availability and unavailability of nearby services.

Decoupled communication In MANETs, the communi-
cation between services should be independent of the
volatile connectivity of their devices. This means that the
services do not necessarily need to be online at the same
time to communicate with each other (time decoupling).
Similarly, the potentially extensive periods of disconnec-
tion during a communication imply that synchronisation
between different parties should be performed without
blocking their control flow, i.e. without suspending their
thread of control (synchronisation decoupling).
Services should also be able to communicate without
knowing each other’s address or location beforehand
(space decoupling). This enables the services to better
adapt to changes in their physical environment as the
conceptually same service may be provided by several
instances hosted by different devices.

Connection-independent failure handling In MANETs,
services should be able to perform failure handling in-
dependent of any network failure. The reason for this
is that disconnections can be transient and as such the
services may want to resume computation upon recon-
nection. Treating disconnections as a normal mode of
operation is an optimistic form of partial failure handling
(and also higher level than physical network failures).

3.2 Event-driven Object Coordination in AmbientTalk
AmbientTalk satisfies the coordination criteria presented
above by modelling service discovery, communication and
failure handling as events. In addition to the asynchronous
object communication mechanism based on event loops, far
references and futures (described in Section 2.2), that lan-
guage provides the two extra characteristics for coping with
service coordination in MANETs: support for discovery and
failure handling.

AmbientTalk employs a publish/subscribe service discov-
ery protocol. Objects are published by means of types (space
decoupling) while a subscription takes a form of the regis-
tration of a discovery event handler on a type tag, which is
triggered whenever an object exported under that tag has be-
come available in the ad hoc network. As result of the dis-
covery, a far reference to the exported object is received.
This protocol is fully decentralised, no servers or other in-
frastructure are required.

In AmbientTalk, far references are resilient to partial fail-
ures (including network partitions). When a network or ma-
chine failure occurs, a far reference becomes disconnected.
A disconnected far reference buffers all messages sent to
it (time decoupling). When the failure is restored at a later
point in time (e.g. a network partition is healed), the far ref-
erence flushes all accumulated messages to the remote ob-
ject in the same order as they were originally sent. Hence
messages sent to far references are never lost, regardless
of the internal connection state of the reference. To enable
such failure handling, AmbientTalk introduces two failure
event handlers (triggered upon disconnection and reconnec-
tion). The closures corresponding to the handlers are asyn-
chronously applied whenever the interpreter detects the dis-
connection (respectively reconnection) of the object referred
to by the far reference.

3.3 Event-driven Object Coordination in Lambic
In order to fully preserve the semantics of Lambic (described
in Section 2.3), a coordination model for MANETs based on
actors and generic functions should represent coordination
events – for discovery, communication and failure handling
– as generic function invocations. Such invocation should be
resilient to partial failures. In what follows we describe the
language abstractions implemented in Lambic that support
these requirements.

Discovery Abstractions
Lambic features a decentralised publish/subscribe service
discovery protocol similar to AmbientTalk. Objects can be
exported and imported by means of type tags denoting the
services they provide. The functions that enable these ac-
tions obey the following patterns:

(export-service object service-description)⇒ object

(import-service service-description)⇒ channel

The import-service function returns a particular
class of object called channel. A channel is a proxy to the
requested service which waits for an object providing the
service (a far reference to that object) to become avail-
able.4 Once this happens, the channel creates a binding to
the object. The functionality of the imported object can be
accessed by means of asynchronous function invocations.
Such invocations are processed at the actor of the imported
object by passing the channel as the actor designator (the
first argument of the in-actor-of function). A channel
can be used in an asynchronous function invocation even if
the service object it represents is not yet discovered. In such
a case, the “unbound” channel buffers the invocations un-
til the object is discovered. After the discovery, the channel
flushes all the stored invocations.

Lambic also provides a way to register discovery event
handlers. This is done by using the following functions:

(when-discovered channel lambda)⇒ channel

(whenever-discovered service-description lambda)
⇒ nil

Whereas the when-discovered function enables the
programmer to define actions to be processed after an im-
ported service is discovered (i.e. after the channel rep-
resenting that service is bound to a far reference), the
whenever-discovered function enables the program-
mers to define actions to be processed whenever an object
providing the requested service becomes available. In both
cases, a channel to the discovered service is passed as argu-
ment to the lambda.

Failure Handling Abstractions
Lambic provides the two failure event handlers for discon-
nection and reconnection proposed by AmbientTalk.

(when-disconnected channel lambda)⇒ channel

(when-reconnected channel lambda)⇒ channel

These two functions enable programmers to define ac-
tions to be executed when an imported service becomes dis-
connected and reconnected respectively. As in the discovery
functions, the lambda of the disconnection and reconnection
function receives a channel as argument.

Channels also provide support for failures. In case of dis-
connection, the channel that represents the service becomes
unbound which means that it buffers the asynchronous func-
tion invocations that indicate this channel as the actor des-
ignator. Once the connection to the service is restored, the
channel sends the accumulated invocations.

4 Channels are similar to a language abstraction in AmbientTalk called
ambient references (Van Cutsem et al. 2007a).

3.4 Discussion
In summary, our generic function-based coordination model
accomplishes the coordination criteria described in this sec-
tion as follows:

• Services are discovered using a decentralised publish/
subscribe protocol. Objects can be exported and discov-
ered by means of type tags denoting the service they pro-
vide. No address or location is required (space decou-
pling).

• Coordination events (for discovery, communication and
failure handling) are all represented as function invoca-
tions. Event handlers can be defined for each of these
events.

• Communication events correspond to asynchronous generic
function invocations (synchronisation decoupling).

• Asynchronous generic function invocations are resilient
to partial failures (by using channels). When an actor that
is supposed to process a remote invocation becomes dis-
connected, the invocation is buffered until the connection
is restored (time decoupling).

Note that none of the features above requires message-
passing semantics. The message-based actor interaction is
cleanly separated from the programming level, replaced by
a number of coordination functions. Methods do not need
to provide a receiver argument. Programmers do not send
messages to objects but only invoke generic functions and
eventually indicate the actor that should process it (by giving
a reference to an object owned by such actor).

4. Lambic in Action
We illustrate the use of the above coordination model by
completing the implementation of the instant messenger ap-
plication introduced in Section 2.3.

4.1 An Instant Messenger for MANETs
Figure 4 shows the complete definition of the function
create-instant-messenger. This function performs
a number of actions. First, it creates the local and remote
interfaces by instantiating the im-local-facade and
im-remote-facade classes. Second, it defines an ac-
tor that contains such instances (although this is not required
if we assume that there is only one instant messenger per
location, in which case the default actor is sufficient to rep-
resent the instant messenger’s boundaries of concurrent ex-
ecution). Third, this function publishes the remote interface.
The service description used in this implementation, con-
tained in the instant-messenger local variable, fol-
lows the convention of a discovery service protocol called
Zero Configuration Networking (IETF 1999). Finally, this
function defines a number of event handlers for discovery,
disconnection and reconnection of other instant messengers.

The following code illustrates how to create instant mes-
senger and send a message.

(defvar *bob-im*
(create-instant-messenger "Bob"))

(talk *bob-im* "Alice" "Hi, Alice")

4.2 Coordination Abstractions in Action
In this example, the coordination abstractions are used as
follows.

Discovering Instant Messengers
Instant messengers discover each other by means of the
whenever-discovered form (inside of the create-
instant-messenger function). Whenever an instant
messenger is encountered, the discovery handler (the lambda
argument of the whenever-discovered function) noti-
fies the discovery (displaying a message), registers the dis-
covered instance (a channel) in the buddies hash map
of the im-local-facade object of the instant messen-
ger, and defines the failure handlers. The discovery han-
dler is invoked only if the discovered instance has not been
previously registered and if the discovered and discovering
messengers are not the same instance. Both conditions are
checked by means of the name of the users of the applica-
tions.

Communicating Instant Messengers
Most of the implementation of this application requires
synchronous generic function invocations. Asynchronous
generic function invocations are only used for communica-
tion between instant messengers. The talk method of the
local interface of the instant messenger asynchronously in-
vokes the receive function (as explained in Section 2.3).
An additional asynchronous generic function invocation
is required to get the user name of a discovered instant
messenger inside of the discovery handler previously pre-
sented. Similar to the previous case, the username ac-
cessor function is evaluated by the actor that owns the re-
mote im-remote-facade object which is connected to
the channel represented by messenger. However, this in-
vocation does require a result. For this reason we put the
invocation inside of a when-resolved form.

Handling Volatile Connectivity of Instant Messengers
In this implementation, text messages can be sent to the dis-
covered instant messengers (by means of the talk function)
even if they are disconnected. This is possible thanks to the
use of channels which store the messages until the instant
messenger they point at becomes available again.

The disconnection and reconnection of the discovered
instant messengers are notified (displaying a message) by
means of handlers specified in the when-disconnected
and when-reconnected functions respectively.

(defun create-instant-messenger (username)
(let ((local-facade (make-instance ’im-local-facade :username username))

(remote-facade (make-instance ’im-remote-facade :username username))
(instant-messenger-type "_p2pchat._tcp."))

(defactor "im-actor" local-facade remote-facade)
(export-service remote-facade instant-messenger-type)
(whenever-discovered instant-messenger-type

(lambda (messenger)
(when-resolved (in-actor-of messenger (username messenger))
(lambda (buddy-name)

(unless (or (gethash buddy-name (im-local-facade-buddies local-facade))
(equal buddy-name (im-local-facade-username local-facade)))

(setf (gethash buddy-name buddies) messenger)
(format t "˜D added to ˜D’s buddy list˜%" buddy-name username)
(when-disconnected messenger
(lambda (messenger)
(format t "˜D offline!˜%" buddy-name)))

(when-reconnected messenger
(lambda (messenger)
(format t "˜D online!˜%" buddy-name))))))))

local-facade))

Figure 4. Function to create an instant messenger in Lambic

4.3 Evaluation
The implementation of the instant messenger in Lambic de-
scribed in this section is comparable to the original im-
plementation in AmbientTalk in terms of functionality and
number of lines (excluding the parts of the implementation
in AmbientTalk that were not covered in our work, like GUI
and leasing abstractions). Furthermore, we achieve the goal
of using a programming style based on generic functions.

5. Implementation
In this section, we discuss the main details of the imple-
mentation of Lambic in Common Lisp together with the
AmbientTalk-like coordination model for MANETs. We use
LispWorks R©(Enterprise Edition 5.1.1) as our development
platform.

5.1 Implementing Event-driven Concurrency
In Lambic, event-driven concurrency is realised by the func-
tions defined for the actor class, to send, receive and pro-
cess messages. The send-message function, invoked in
the expansion of the in-actor-of macro, has two meth-
ods which handle local and remote asynchronous func-
tion invocations (specialising a receiver argument in
the distributable-object and far-reference
classes respectively). In both cases the asynchronous invoca-
tions are converted into messages. Local asynchronous invo-
cations are handled by invoking the receive-message
function which puts the message in the event queue of the
actor. Remote asynchronous invocations are forwarded to a
communication actor that transmits the invocations over the

network. Both send methods immediately return a future –
an instance of a future class.

The event loop of an actor in Lambic is represented by
a process which is provided by the Multi-Processing library
of LispWorks R©. The actor’s event queue corresponds to the
mailbox of a such process. The defactor macro creates
an instance of the actor class and initiates a process which
continuously waits for a message in its mailbox. Upon mes-
sage reception, the process calls the process-message
function of the actor which converts the message into a
generic function invocation, invokes the function, and sends
the result to the actor that contains the future attached to the
message (if any).

In the definition of the distribution and concurrency
model implemented by Lambic (described in Section 2.3),
we state that function invocations that spawn the actors’
boundaries must be asynchronous. However, thus far this is
not enforced at the implementation level. Objects owned by
actors can still be used in synchronous function invocations
by any process in the system. We then leave the responsibil-
ity to the programmers to follow the principles defined by
our model.

Asynchronous return values are achieved by means of
the functions when-resolved and resolve-with-
result defined for the future class. when-resolved
(directly used in programs, as described in Section 2.3) re-
ceives a future and a lambda that is executed if the value
field of the future is bound, or stored in the continuations
list otherwise. The resolve-with-result function is
asynchronously invoked when the actor that processes the

asynchronous invocation for which the future serves as the
return value’s placeholder, produces the result.

5.2 The Coordination Model
The coordination model for MANETs implemented in Lam-
bic (presented in Section 3.3) relies on a Common Lisp li-
brary called CL-ZEROCONF (Wiseman 2005). This library
provides an interface to the implementation of the Zero Con-
figuration Networking protocol by Apple Inc., Bonjour (Ap-
ple Inc. 2008). The language abstractions for discovery and
failure handling are built on top of callback functions pro-
vided by CL-ZERCONF to discover, resolve and remove
services.

In Lambic, messages are reliably transmitted over the
network using channels (instances of the channel class)
which abstract the socket-based communication proposed
by the Communication library of LispWorks R©. Channels
work in a similar manner to futures. A channel represents
the connection to a remote actor and as such it transmits
messages only if such actor is available in the network, and
stores them otherwise until the actor is (re)connected.

6. Conclusion and Future Work
In this work, we focus on actor-based distribution and con-
currency to cope with the dynamicity of mobile computing
environments. We identify the mismatch between the ac-
tor’s message-sending semantics and the generic function-
based method invocation model. We then propose an object-
oriented programming language model that reconciles actors
and objects. In our model, actors define boundaries of con-
current execution for the objects; methods are specialised on
objects (not on actors); inter-actor computations are realised
by means of asynchronous generic function invocations; and
the results of functions evaluations are asynchronously re-
turned to the actor from which the functions are invoked.
Therefore, the actor’s message-sending semantics are explic-
itly separated from the programming level, which enables
the programmers to invoke functions instead of sending di-
rect messages to objects and to define methods without re-
ceiver arguments.

We implement this model as an extension to Common
Lisp called Lambic. We use Lambic to validate our work by
implementing a number of functions for service coordination
in mobile ad hoc networks (discovery, communication and
failure handling) based on the coordination model of Ambi-
entTalk. We illustrate the use of such functions developing
an instant messenger application for such networks.

Currently, we are investigating different extensions of
our model that benefit from the combination of actors
and generic functions. We are exploring how to integrate
our model with generic function-based approaches for ex-
pressing context-dependent behavioural adaptations (like
ContextL (Costanza and Hirschfeld 2005) or Filtered Dis-
patch (Costanza et al. 2008)), a property that is also con-

sidered essential for services running on dynamically recon-
figurable environments like MANETs. Such an integration
would enable programmers to model distributed context-
dependent adaptations, which is one of our ultimate goals.

We are also investigating alternatives to bring the seman-
tics of synchronous and asynchronous generic function invo-
cations closer to each other, which would facilitate the evo-
lution of programs, similarly to approaches that unify syn-
chronous and asynchronous message-based object commu-
nication (Caromel 1993).

Acknowledgments
This work has been supported by the VariBru project of
the ICT Impulse Programme of the Institute for the encour-
agement of Scientific Research and Innovation of Brussels
(ISRIB), and the MoVES project of the Interuniversity At-
traction Poles Programme of the Belgian State, Belgian Sci-
ence Policy. The authors would also like to thank Sebastian
Gonzalez, Engineer Bainomugisha, Yves Vandriessche and
Charlotte Herzeel for the valuable discussions during this
work.

References
Gul Agha. Actors: a Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, 1986. ISBN 0-262-01092-5.

Apple Inc. Networking Bonjour Protocol, 2008. URL
http://developer.apple.com/networking/bonjour.

Joe Armstrong, Robert Virding, Claes Wikström, and Mike
Williams. Concurrent Programming in Erlang. Prentice Hall,
2nd edition, 1996.

Denis Caromel. Towards a Method of Object-oriented Concurrent
Programming. Communications of the ACM, 36(9):90–102,
1993.

Stewart M. Clamen, Linda D. Leibengood, Scott Nettles, and
Jeannette M. Wing. Reliable Distributed Computing with
Avalon/Common Lisp. Computer Languages, 1990., Inter-
national Conference on, pages 169–179, Mar 1990. doi:
10.1109/ICCL.1990.63772.

Pascal Costanza and Robert Hirschfeld. Language Constructs for
Context-Oriented Programming - An overview of ContextL. In
Dynamic Languages Symposium, 2005.

Pascal Costanza, Charlotte Herzeel, Jorge Vallejos, and Theo
D’Hondt. Filtered Dispatch. In DLS ’08: Proceedings of the
2008 symposium on Dynamic languages, pages 1–10, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-270-2.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D’Hondt, and Wolfgang De Meuter. Ambient-Oriented Pro-
gramming in Ambienttalk. In Proceedings of the 20th Euro-
pean Conference on Object-Oriented Programming (ECOOP),
Nantes, France, 2006.

Dirk Gerrits. Erlisp, Common Lisp Library, 2005. URL
http://common-lisp.net/project/erlisp.

Luke Gorrie. Distel: Distributed emacs lisp (for erlang). In Erlang
User Conference, 2002.

Robert H. Halstead, Jr. MULTILISP: a Language for Con-
current Symbolic Computation. ACM Trans. Program.
Lang. Syst., 7(4):501–538, 1985. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/4472.4478.

Klaus Harbo. CL-MUPROC: Erlang-inspired Mul-
tiprocessing in Common Lisp, 2008. URL
http://common-lisp.net/project/cl-muproc.

Rich Hickey. Clojure, 2008. URL http://clojure.org.

Lothar Hotz and Michael Trowe. NetCLOS - Parallel Programming
in Common Lisp. In International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999.

IETF. Zero Configuration Networking (Zeroconf), 1999. URL
http://www.zeroconf.org.

Henry Lieberman. Concurrent object-oriented programming in
ACT 1. In A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming, pages 9–36. MIT Press,
1987.

Barbara H. Liskov and Liuba Shrira. Promises: Linguistic Support
for Efficient Asynchronous Procedure Calls in Distributed Sys-
tems. In Proceedings of the ACM SIGPLAN 1988 conference
on Programming Language design and Implementation, pages
260–267. ACM Press, 1988. ISBN 0-89791-269-1.

Mark S. Miller, Dean E. Tribble, and Jonathan Shapiro. Concur-
rency among strangers: Programming in E as plan coordination.
In Symposium on Trustworthy Global Computing, volume 3705
of LNCS, pages 195–229. Springer, 2005.

Christian Queinnec. Distributed Generic Functions. In In Proc.
1997 France-Japan Workshop on Object-Based Parallel and
Distributed Computing, 1997.

Peter Seibel. Practical Common Lisp. 2005. ISBN 1-59059-239-5
(hardcover).

Tom Van Cutsem, Jessie Dedecker, and Wolfgang De Meuter.
Object-Oriented Coordination in Mobile Ad Hoc Networks. In
COORDINATION, 2007a.

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. AmbientTalk: Object-
Oriented Event-driven Programming in Mobile Ad hoc Net-
works. In XXVI International Conference of the Chilean Com-
puter Science Society (SCCC). IEEE Computer Society, 2007b.

Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jorge
Vallejos, and Jessie Dedecker. Ambient-Oriented Programming
website, 2008. URL http://prog.vub.ac.be/amop.

Carlos Varela and Gul Agha. Programming Dynamically
Reconfigurable Open Systems with SALSA. SIGPLAN
Not., 36(12):20–34, 2001. ISSN 0362-1340. doi:
http://doi.acm.org/10.1145/583960.583964.

John Wiseman. CL-ZEROCONF Library, 2005. URL
http://projects.heavymeta.org/rendezvous.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama.
Object-oriented Concurrent Programming in ABCL/1. In Con-
ference proceedings on Object-oriented programming systems,
languages and applications, pages 258–268. ACM Press, 1986.
ISBN 0-89791-204-7.

Chung-Kwong Yuen and Weng-Fai Wong. A Self Interpreter for
BaLinda Lisp. SIGPLAN Not., 25(7):39–58, 1990. ISSN 0362-

1340.

