
18 June 2001
4th ECOOP Workshop on O-O 

Architectural Evolution, Budapest 1

Designing for Architecture 
Evolvability : some conclusions 

from a MIS case study
Stephen Cook

Applied Software Engineering Research Group
University of Reading

S.C.Cook@reading.ac.uk

http://www.rdg.ac.uk/~sis99scc/



18 June 2001
4th ECOOP Workshop on O-O 

Architectural Evolution, Budapest 2

Case Study Context
Part of DESEL project
� Designing for Ease of System Evolution
� http://www.rdg.ac.uk/~sis99scc/desel/
Partners include :
� Rutherford Appleton Laboratory (IT Dept.)
� University of Hertfordshire (Paul Wernick)

Case studies continue…
� conclusions so far are provisional
� need to validate conclusions in wider context



18 June 2001
4th ECOOP Workshop on O-O 

Architectural Evolution, Budapest 3

FRS Key Features
In-house financial MIS for laboratory project 

managers
Generates parameterised HTML reports from 

snapshots of Oracle Financials system, staff-time 
booking system etc.
Data flows : simple
Data semantics : complex and incompletely 

understood
Long product-line history (17 years)
Limited resources (2 staff-years p.a.)



18 June 2001
4th ECOOP Workshop on O-O 

Architectural Evolution, Budapest 4

Evolvability as a Viewpoint
Evolvability requires explicit attention :
� system designers make different decisions if they 

consciously design for evolvability
� project managers should control short-term pressures 

to defer evolvability issues
� Do domain experts analyse requirements differently if 

they adopt an evolvability point of view?

Is architecture evolvability a definable viewpoint 
(in the IEEE 1471 sense)?
� further work in progress



18 June 2001
4th ECOOP Workshop on O-O 

Architectural Evolution, Budapest 5

Use Patterns to Localise Evolution
Example of a MIS architecture pattern :
� 3-stage pipeline of Adapters (Gamma et al. p139) :

� Adapter 1 : batches real-time data updates into snapshots
� evolution is mostly technology-driven, so easier to manage

� Adapter 2 : abstracts from atomic data using business rules
� e.g. Distribute an Invoice Line across Projects
� cleans implementation details of transactions
� needs to be pluggable / swappable because rules evolve
� issues of granularity, normalisation, under-specification of rules
� Do most MIS evolution problems occur here?

� Adapter 3 : marshals business objects into business process 
variants

� e.g. Manage a project using CERN reporting conventions



18 June 2001
4th ECOOP Workshop on O-O 

Architectural Evolution, Budapest 6

Reaffirm SE Principles
Apply established software engineering 

principles to solve architectural problems, e.g. :
� separation of concerns
� abstraction / refinement
� reusable architecture patterns

Develop languages, notations and tools that 
incorporate SE principles
� make poor designs more difficult to produce than 

better designs
� enable designers to measure quality early in life-cycle


