
1ApplFLab — Custom-made User Interface Components in VisualWorks

ApplFLab

Custom-made User Interface

Components in VisualWorks
Koen De Hondt

Programming Technology Lab
Computer Science Department

Vrije Universiteit Brussel

email: kdehondt@vnet3.vub.ac.be
http://progwww.vub.ac.be/prog/pools/applflab/applflab.html

Application Framework Laboratory

Tutorial

2ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks

• Components

• Building new components

• ApplFLab

• Example: building a file selector component
with ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

3ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks
• Components

• Building new components

• ApplFLab

• Example: building a file selector component
with ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

4ApplFLab — Custom-made User Interface Components in VisualWorks

Application Building in VisualWorks

➊

❷ ❸ ❹ ❺ ❻

➊ Open a new canvas
❷ Drag widgets from the Palette and set their

properties with the Properties Tool
❸ Install the canvas on an application model class
❹ Define aspect methods and action methods
❺ Use the Browser to complete the application model
❻ Open the application for testing

Application Building in VisualWorksTutorial

5ApplFLab — Custom-made User Interface Components in VisualWorks

Important Classes

• UIPainter
The application for composing a canvas.

• UISpecification
Abstract superclass of all specification
classes. The objects describe a user
interface entity: a widget, a window, …

• ApplicationModel
Abstract superclass of all application
classes. On these classes window
specifications are installed in literal form.
These classes implement all the user
interface logic and the link with the
domain model.

• UIDefiner
Object that is responsible for generation
of aspect and action methods.

• UILookPolicy
Object that knows how to setup widgets
in a particular host look.

• UIBuilder
Object responsible for constructing a
user interface from a UISpecification
and a UILookPolicy.

Application Building in VisualWorksTutorial

6ApplFLab — Custom-made User Interface Components in VisualWorks

The Standard Palette
• The components on the standard palette are

general-purpose, thus low-level

• An application designer needs high-level
components targeted to a particular problem
domain

• This can be accomplished by:
– Building composites of standard components, i.e.

applications

– Implementing custom view classes

so-called “domain-
specific components”

Application Building in VisualWorksTutorial

7ApplFLab — Custom-made User Interface Components in VisualWorks

Reuse of Applications

• Reuse through specialisation (subclassing)

• Reuse through composition (subcanvas
technology)
– Use of application models on an “as-is” basis,

no configuration possible at painting time

– Handcoding necessary to configure the
embedded application model at runtime

Application Building in VisualWorksTutorial

8ApplFLab — Custom-made User Interface Components in VisualWorks

Reuse of Custom-Made Views

• Custom-made views can be reused in an
application by means of a view holder widget
– Use of views on an “as-is” basis, no configuration

possible at painting time

– Handcoding necessary to configure the embedded
view at runtime

Application Building in VisualWorksTutorial

9ApplFLab — Custom-made User Interface Components in VisualWorks

Problems with this Kind of Reuse

• Configuration of an embedded application
model or custom-made view at runtime
leads to code duplication

• Handcoding the configuration leads to
coding errors when the implementation of
the application model or custom-made view
is not well-understood

Application Building in VisualWorksTutorial

10ApplFLab — Custom-made User Interface Components in VisualWorks

Solution: Make Your Own Components

• When you want to put an application model
or a custom-made view on the palette

• When you want to configure your
components at painting time, instead of at
runtime

• When you want to make applications for
your problem domain in a plug & play
fashion

Application Building in VisualWorksTutorial

11ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks

• Components
• Building new components

• ApplFLab

• Example: building a file selector component
with ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

12ApplFLab — Custom-made User Interface Components in VisualWorks

What is a Component?

• At building time a component is represented by
an instance of a subclass of ComponentSpec

• At runtime a component is represented by an
instance of a subclass of VisualPart, usually a
View

• A ComponentSpec is stored as a literal array
encoding in a spec method

Tutorial Components

13ApplFLab — Custom-made User Interface Components in VisualWorks

Component Specifications

• Specifications tell a UIBuilder what features and
appearance are wanted in the interface that it is
building

• Subclasses of ComponentSpec convey all of the
information required in order to build and emplace
an instance of a particular kind of view component,
including its location, opacity, color, decoration,
name, and other more specialized properties

Tutorial Components

14ApplFLab — Custom-made User Interface Components in VisualWorks

Component Specification Classes

• Supply a name and an icon for identification in
the application builder

• Supply the user interfaces to edit their
instances, the so-called “properties tool slices”

• Define what default instances look like when
dragged from a palette

• Define how target components are built

Tutorial Components

15ApplFLab — Custom-made User Interface Components in VisualWorks

ComponentSpec Hierarchy

ComponentSpec (layout)

NamedSpec (name, flags, isOpaque, colors)

ArbitraryComponentSpec (component)

CompositeSpec ()

SubCanvasSpec (majorKey, minorKey, clientKey)

WidgetSpec (model, callbacksSpec, tabable)

 ButtonSpec (label, hasCharacterOrientedLabel, style)

 MenuComponentSpec (menu, performer)

Tutorial Components

16ApplFLab — Custom-made User Interface Components in VisualWorks

Important Spec Class Protocol

• Class methods
– #componentName

– #addBindingsTo:for:channel:

– #specGenerationBlock

– #placementExtentBlock

– #paletteIcon

– #paletteMonoIcon

– #slices

– slice resource methods

• Instance methods
– #defaultModel

– #dispatchTo:with:

– #literalArrayEncoding

– accessor and mutator
for each property

Property values are held
in instance variables

Tutorial Components

17ApplFLab — Custom-made User Interface Components in VisualWorks

Visual Parts

• A VisualPart is an object that can create a visual
representation of itself (via #displayOn:)

• VisualParts make up a structured picture by
providing a pointer to a container, usually a
Wrapper

Tutorial Components

18ApplFLab — Custom-made User Interface Components in VisualWorks

VisualPart Hierarchy

VisualPart (container)

CompositePart (components, preferredBounds)

DependentComposite (model)

CompositeView (controller)

SubCanvas ()
DependentPart (model)

View (controller)

SimpleView (state)

SimpleComponent (state)

Wrapper (component)

Active components

Passive components

Tutorial Components

19ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks

• Components

• Building new components
• ApplFLab

• Example: building a file selector component
with ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

20ApplFLab — Custom-made User Interface Components in VisualWorks

Building a New Component

• Build a new widget class and any necessary
supporting classes

• Build a corresponding component spec class

• Add the necessary behavior to
UILookPolicy for constructing the
component from specifications

• Edit UIPalette to make the component
available during painting

Tutorial Building New Components

21ApplFLab — Custom-made User Interface Components in VisualWorks

Build the Widget

• Implement an MVC triad

• Passive components
➡ V is a subclass of SimpleComponent

• Active components
➡ V is a subclass of SimpleView

• C is a subclass of an appropriate controller
class. No input ➡ use class NoController

• M subclass of ValueModel or related

Tutorial Building New Components

22ApplFLab — Custom-made User Interface Components in VisualWorks

Build Component Spec Class

• Choose a superclass
• Add component description protocol
• Define the default model
• Add the component construction behavior
• Build the properties tool slices
• Add the interface bindings
• Create the spec generation block
• Create the palette icons
• Add other spec class protocol

Tutorial Building New Components

23ApplFLab — Custom-made User Interface Components in VisualWorks

Build Component Spec Class

• Example code taken from InputFieldSpec

Tutorial Building New Components - Example

24ApplFLab — Custom-made User Interface Components in VisualWorks

Choose a Superclass

• Passive component
➡ subclass NamedSpec

• Active component
➡ subclass WidgetSpec,

MenuComponentSpec, or ButtonSpec
• Specialisation of existing component

➡ subclass that component’s spec class
• Naming convention: all spec class names end

with “Spec”, e.g “MyComponentSpec”

Tutorial Building New Components

25ApplFLab — Custom-made User Interface Components in VisualWorks

Choose a Superclass

• An input field is an active component with
a menu

Tutorial Building New Components - Example

WidgetSpec
MenuComponentSpec

TextEditorSpec
InputFieldSpec

26ApplFLab — Custom-made User Interface Components in VisualWorks

Add Component Description Protocol

• Add an instance variable for each property
of the component
Good idea to include a default value
through lazy initialization

• Add an accessor and a mutator for each
instance variable

Tutorial Building New Components

27ApplFLab — Custom-made User Interface Components in VisualWorks

Add Component Description Protocol

Tutorial Building New Components - Example

TextEditorSpec subclass: #InputFieldSpec
instanceVariableNames: 'numChars type formatString '

numChars
^numChars

formatString
^formatString

type
^type == nil ifTrue: [#string] ifFalse: [type]

28ApplFLab — Custom-made User Interface Components in VisualWorks

Define the Default Model

• Implement the #defaultModel method,
answer a ValueModel or related object

• Serves as the model at editing time

• Serves as the model at runtime when no
model is specified

• Used by UIDefiner to generate the aspect
method

Tutorial Building New Components

29ApplFLab — Custom-made User Interface Components in VisualWorks

Define the Default Model

Tutorial Building New Components - Example

defaultModel

type == nil ifTrue: [^ValueHolder with: String new].
type == #number

ifTrue: [^ValueHolder with: 0].
(type == #string or: [type == #password])

ifTrue: [^ValueHolder with: String new].
type == #text

ifTrue: [^ValueHolder with: Text new].
^ValueHolder with: nil

30ApplFLab — Custom-made User Interface Components in VisualWorks

Add Construction Behavior

• Implement the #dispatchTo:with: method

dispatchTo: policy with: builder

policy myComponent: self into: builder

Use an appropriate name
for your component

Tutorial Building New Components

31ApplFLab — Custom-made User Interface Components in VisualWorks

Add Construction Behavior

Tutorial Building New Components - Example

dispatchTo: policy with: builder

policy inputBox: self into: builder

32ApplFLab — Custom-made User Interface Components in VisualWorks

Build the Properties Tool Slices

• Paint each slice with the Painter

• Install them as class methods in protocol
interface specs

• Naming convention:
slice named “slice” installed in method
named “sliceEditSpec”
e.g. “basicsEditSpec”, “detailsEditSpec”

Tutorial Building New Components

33ApplFLab — Custom-made User Interface Components in VisualWorks

Build the Properties Tool Slices

• InputFieldSpec implements
#basicsEditSpec and #detailsEditSpec

Tutorial Building New Components - Example

34ApplFLab — Custom-made User Interface Components in VisualWorks

Add the Interface Bindings

• Implement the #addBindingsTo:for:channel:
class method in protocol private-interface
building

• Add an entry for each property as follows:

addBindingsTo: env for: inst channel: aChannel

super addBindingsTo: env for: inst channel: aChannel.
env at: #property

put: (self adapt: inst
forAspect: #property
channel: aChannel)

Tutorial Building New Components

35ApplFLab — Custom-made User Interface Components in VisualWorks

Add the Interface Bindings

Tutorial Building New Components - Example

addBindingsTo: env for: inst channel: aChannel

super addBindingsTo: env for: inst channel: aChannel.
env at:#numChars

put: (TypeConverter onNumberValue: (self adapt:inst
forAspect:#numChars channel:aChannel)).

env at:#type
put: (self adapt:inst forAspect:#type channel: aChannel).

env at:#formatString
put: (self adapt:inst forAspect:#formatString

channel: aChannel).
env at:#typeMenu put:self typeMenu.
... <and more> ...

36ApplFLab — Custom-made User Interface Components in VisualWorks

Create the Spec Generation Block

• Implement the #specGenerationBlock class
method in protocol private-interface
building

• Answer a block, taking 2 arguments, a
controller and a point, returning a default
instance of the spec class

specGenerationBlock
^[:ctrl :point| MyComponentSpec

layout:((ctrl gridPoint: point) extent:100@50)]

default size
when painted

Tutorial Building New Components

37ApplFLab — Custom-made User Interface Components in VisualWorks

Create the Spec Generation Block

• Inherited from ComponentSpec

Tutorial Building New Components - Example

specGenerationBlock

^[:ctrlr :point | self layout:
((ctrlr gridPoint: point) extent:
(ctrlr currentMode value class

placementExtentFor: self inBuilder: ctrlr builder))]

38ApplFLab — Custom-made User Interface Components in VisualWorks

Create the Palette Icons

• Use the Image Editor to paint a black &
white icon and a color icon with extent
26@26

• Include the look of the button: border,
background and 3D effect

• Install the icons in protocol resources, in
methods paletteMonoIcon and paletteIcon
respectively

Tutorial Building New Components

39ApplFLab — Custom-made User Interface Components in VisualWorks

Create the Palette Icons

Tutorial Building New Components - Example

40ApplFLab — Custom-made User Interface Components in VisualWorks

Add Other Spec Class Protocol

• In protocol private-interface building:
– #componentName

returns a String identifying the component

– #placementExtentBlock
returns a block, returning a Point describing the
component’s default extent

– #slices
returns an array of arrays describing the slices
in the component’s properties tool

Tutorial Building New Components

41ApplFLab — Custom-made User Interface Components in VisualWorks

Add Other Spec Class Protocol

Tutorial Building New Components - Example

componentName
^'Input Field'

placementExtentBlock
^[:bldr | 100 @ (TextAttributes defaultLineGrid + 4)]

slices (inherited from WidgetSpec)
^#((Basics basicsEditSpec)

(Details detailsEditSpec)
(Validation validationEditSpec nil callbacks)
(Notification notificationEditSpec nil callbacks)
(Color propSpec ColorToolModel)
(Position propSpec PositionToolModel)
(#'Drop Target' dropTargetSpec))

42ApplFLab — Custom-made User Interface Components in VisualWorks

Change UILookPolicy

• Implement #myComponent:into: in class
UILookPolicy

• This method interprets the spec argument,
sets up a VisualPart accordingly and puts it
in the builder argument

myComponent: spec into: builder

...

Tutorial Building New Components

43ApplFLab — Custom-made User Interface Components in VisualWorks

Change UILookPolicy
Tutorial Building New Components - Example

inputBox: spec into: builder
| component model menu performer alignment |
model := spec modelInBuilder:builder.
component := self inputBoxClass new.

...
component model:model.

...
component controller:self inputBoxControllerClass new.
(menu := spec getMenuIn:builder) == nil

ifFalse: [component controller menuHolder:menu].
...

spec numChars == nil ifFalse: [component controller
maxChars:spec numChars]

...
builder wrapWith:

(self simpleWidgetWrapperOn:builder spec: spec)

44ApplFLab — Custom-made User Interface Components in VisualWorks

Edit UIPalette

• Edit method #standardSpecsForPalette

• This method returns the collection of
component specification classes on the palette

standardSpecsForPalette

^#(#ActionButtonSpec #CheckBoxSpec #RadioButtonSpec
#LabelSpec #InputFieldSpec #TextEditorSpec
#MenuButtonSpec #SequenceViewSpec #ComboBoxSpec
#DividerSpec #GroupBoxSpec #RegionSpec #SliderSpec
#TableViewSpec #DataSetSpec #NoteBookSpec
#ArbitraryComponentSpec #SubCanvasSpec)

Tutorial Building New Components

45ApplFLab — Custom-made User Interface Components in VisualWorks

Edit UIPalette

Tutorial Building New Components - Example

standardSpecsForPalette

^#(#ActionButtonSpec #CheckBoxSpec #RadioButtonSpec
#LabelSpec #InputFieldSpec #TextEditorSpec
#MenuButtonSpec #SequenceViewSpec #ComboBoxSpec
#DividerSpec #GroupBoxSpec #RegionSpec #SliderSpec
#TableViewSpec #DataSetSpec #NoteBookSpec
#ArbitraryComponentSpec #SubCanvasSpec)

46ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks

• Components

• Building new components

• ApplFLab
• Example: building a file selector component

with ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

47ApplFLab — Custom-made User Interface Components in VisualWorks

ApplFLab

• First conceived to support the creation of
custom-made composite components for
domain-specific frameworks
– Turns an application model into a component

on the palette

– Allows associating properties with application
models

– Uses subcanvas technology

Tutorial ApplFLab

48ApplFLab — Custom-made User Interface Components in VisualWorks

ApplFlab

• Is now able to make subclasses of standard
specification classes, as well as spec classes
for custom-made VisualPart classes

• This tutorial only focusses on composite
components

Tutorial ApplFLab

49ApplFLab — Custom-made User Interface Components in VisualWorks

ApplFLab Implementation

• ApplFLab is an extension of VisualWorks,
it does not change the standard classes

• ApplFLab provides its own version of each
VisualWorks tool

• ApplFLab’s implementation is subject to
change with every upgrade of VisualWorks

• ApplFLab is not a finished product, but is
continuously under development

Tutorial ApplFLab

50ApplFLab — Custom-made User Interface Components in VisualWorks

ApplFLab Features

Enhanced painter

+ Enhanced properties tool
+ Extended ApplicationModel

Multiple palettes

Palette editor

Extended
resource finder

Component editor

Tutorial ApplFLab

51ApplFLab — Custom-made User Interface Components in VisualWorks

Enhanced Painter

• Pick a palette when opening a new canvas

• Extended widget handles for resizing in one
direction

• “Define All...” command to define all
aspects

Tutorial ApplFLab

52ApplFLab — Custom-made User Interface Components in VisualWorks

Extended ApplicationModel

• Class UIBApplicationModel

• Other builder: UIBBuilder

• Convenience methods for:
– component and widget access

– component enabling and disabling

– component visibility control

• Binding of non-unary action methods

• Release of dependencies when window closes

Tutorial ApplFLab

53ApplFLab — Custom-made User Interface Components in VisualWorks

Enhanced Properties Tool

Models and Aspects
slices to configure
the aspects

Window button to
display the properties
of the canvas

Tutorial ApplFLab

54ApplFLab — Custom-made User Interface Components in VisualWorks

Multiple Palettes

Tutorial ApplFLab

55ApplFLab — Custom-made User Interface Components in VisualWorks

Palette Editor

All other components
in the image

Components on the
palette after installation

All palettes
in the image

Tutorial ApplFLab

56ApplFLab — Custom-made User Interface Components in VisualWorks

Extended Resource Editor

Open a component editor on
the selected specification class

View the (user)
specification classes

Tutorial ApplFLab

57ApplFLab — Custom-made User Interface Components in VisualWorks

Component Editor

• Central tool of ApplFLab

• Supports creation of new
user interface components
– Composite components

– Specialisations of standard
components

• Can be used to edit
standard components
(not recommended)

Tutorial ApplFLab

58ApplFLab — Custom-made User Interface Components in VisualWorks

Component Editor—Functionality

➊ ❷ ❸ ❹ ❺ ❻ ➐

➊ Registering the component’s application models
❷ Building the application models
❸ Defining the component’s properties tool slices
❹ Painting the properties tool slices
❺ Supplying painting information
❻ Installing the component in the system
➐ Putting the component on a palette

Tutorial ApplFLab

59ApplFLab — Custom-made User Interface Components in VisualWorks

➊ Registering the Application Models

Name of component

List of all application
model – user interface
pairs that implement
this component

Tutorial ApplFLab

60ApplFLab — Custom-made User Interface Components in VisualWorks

❷ Building the Application Models

Painter embedded
in the component
editor’s notebook

Perform all the
standard application
building steps

Tutorial ApplFLab

61ApplFLab — Custom-made User Interface Components in VisualWorks

❸ Defining the Properties Tool Slices

List of slices in the
component’s properties
tool

Editor for selected slice

Color and position slices
cannot be edited but can
be removed

Tutorial ApplFLab

62ApplFLab — Custom-made User Interface Components in VisualWorks

❹ Painting the Properties Tool Slices

Painter embedded
in the component
editor’s notebook

Slices defined in
previous step

Standard slices
(cannot be edited)

No install, no define

Tutorial ApplFLab

63ApplFLab — Custom-made User Interface Components in VisualWorks

❺ Supplying Painting Information

Height and width of
component when
dragged from a palette

Black & white icon

Color icon

Embedded icon editor

Tutorial ApplFLab

64ApplFLab — Custom-made User Interface Components in VisualWorks

❻ Installing the Component

Embedded installation
dialog in component
editor’s notebook

Tutorial ApplFLab

65ApplFLab — Custom-made User Interface Components in VisualWorks

➐ Putting the Component on a Palette

Embedded palette
editor in component
editor’s notebook

Tutorial ApplFLab

66ApplFLab — Custom-made User Interface Components in VisualWorks

More on Properties

• Properties are attributes of a component

• They define the component’s
– look and feel (minorKey and majorKey)

– link with the domain model (aspect, client,
action)

– visual appearance (label, image, menu)

– state

Tutorial ApplFLab

67ApplFLab — Custom-made User Interface Components in VisualWorks

Property-Entry Components
• Property fields

for properties retrieved from an application model at building time

• Subproperty fields
for overriding properties of subcomponents

• Standard components
for simple (state) properties

• Special-purpose property-entry components
specialisations of standard components for use on properties slices
now only Property Input Field, probably more later

• Custom-made components
for properties that require a complex interface to enter them, e.g. labels

Tutorial ApplFLab

68ApplFLab — Custom-made User Interface Components in VisualWorks

Property Field

• A UI component specifically built for
use in a slice of the properties tool

• Can only be used when painting
properties tool slices!

• Property fields configure a component’s
aspect, action, label, visual, menu, client

• Property values are fetched from an
application model at building time

Properties palette

Tutorial ApplFLab

69ApplFLab — Custom-made User Interface Components in VisualWorks

Properties of the Property Field
Property name

Property type

Combo Box or
plain input field?

Can the field be left empty?

Should this property’s
value be set before or after
building the component?

Initialization code
generated by the Definer

Tutorial ApplFLab

70ApplFLab — Custom-made User Interface Components in VisualWorks

Subproperty Fields

• A UI component specifically built for use in
a slice of the properties tool

• Can only be used when painting properties
tool slices!

• Subproperty fields allow overriding of
properties of subcomponents

• Can only be used on properties slices of
composite components

Tutorial ApplFLab

71ApplFLab — Custom-made User Interface Components in VisualWorks

Properties of the Subproperty Field

Property name

The look & feel of the
component for which this
property is valid

The component in the
canvas selected above

Property name of the
component selected above

Tutorial ApplFLab

72ApplFLab — Custom-made User Interface Components in VisualWorks

Other Property-Entry Components

• A standard component can be put on
a properties slice when it has only
one model and its model understands
#literalArrayEncoding

• The same holds for a custom-made
component

Use simple models or implement
#literalArrayEncoding on your models

Tutorial ApplFLab

73ApplFLab — Custom-made User Interface Components in VisualWorks

Special Property-Entry Components

• Specialisations of standard components

• Created specifically for use on properties
slices

• For now only Property Input Field, more
later

Tutorial ApplFLab

74ApplFLab — Custom-made User Interface Components in VisualWorks

Properties of
Special Property-Entry Components

All special property-entry
components share this page

Can the field be left empty?

Should this property’s
value be set before or after
building the component?

Default value for property

Tutorial ApplFLab

75ApplFLab — Custom-made User Interface Components in VisualWorks

How are Property Values Registered?

• Property values are registered before or after the
Builder sets up the component (cfr. #preBuildWith:
and #postBuildWith:)

• Each property value is copied from the custom
component’s spec to the application model that
implements the component

• This only holds for new properties, not for
properties associated with SubCanvasSpec and
superclasses

Tutorial ApplFLab

76ApplFLab — Custom-made User Interface Components in VisualWorks

Registration of properties

• The value of property p is passed to the
application model by sending it the message
#p:

• Such a method #p: is typically found in
protocol initialize-release

Tutorial ApplFLab

77ApplFLab — Custom-made User Interface Components in VisualWorks

Choosing Between Before and After

• Choose Initialize before building
– for all properties needed during building by the

Builder

– for most aspect properties!

• Choose Initialize after building
– for properties that are only needed after building

– typically action properties and simple (state)
properties

Tutorial ApplFLab

78ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks

• Components

• Building new components

• ApplFLab

• Example: building a file selector component
with ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

79ApplFLab — Custom-made User Interface Components in VisualWorks

Example: Building a File Selector
Component with ApplFLab

ExampleTutorial

• Step by step illustration of the Component
Editor on a file selector à la Macintosh

80ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

81ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

➊

82ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❷

83ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❷

84ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❸

85ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❹

86ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❹

87ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❹

88ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❹

89ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❺

90ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

❻

91ApplFLab — Custom-made User Interface Components in VisualWorks

ExampleTutorial

➐

92ApplFLab — Custom-made User Interface Components in VisualWorks

Summary

• Building a new component in VisualWorks
is not easy without proper guidance

• ApplFLab’s component editor guides the
component designer through all the steps
that need to be taken in order to add a new
component to the system

Tutorial

93ApplFLab — Custom-made User Interface Components in VisualWorks

• Application building in VisualWorks

• Components

• Building new components

• ApplFLab

• Example: building a file selector component with
ApplFLab

• Exercise: building components with ApplFLab

OverviewTutorial

94ApplFLab — Custom-made User Interface Components in VisualWorks

Exercise

• With detailed notes:
– Build a new component starting from an

existing application model

– Test in an example application

– Extend the component and test it again

• On your own:
– Build a component from scratch

– Further exploration of ApplFLab

Tutorial Exercise

