

* Abstract beings that inhabit computers
* Manipulate data

* Directed by a program

* Written in a programming language

* Dialect of Lisp (1958)

* Proposed in 1975

* Extremely powerful and elegant

) Rers

* Many implementations available

actua| goal of e Allows you to “go meta” | use DrRacket
this course

3

e Standardized into R"Rs

e Chapters |, 2, 3,5, 6: Structure and
Interpretation of Computer Programs
(Gerald Jay Sussman and Hal Abelson):
chapters 1, 2, 3,4

® Chapters 4, 7: Slides + notes in classroom

4

1. Scheme $-expressions, Function definitions

2. lexical Scoping vs. dynamic scoping
3. Iteration as Optimised Tail Recurrsion
4, Higher Order Procedures and Anonymous lambda‘s.

5

1. Conscells. lists and nested listys.

2. list processing and Higher Order list Procedures
3. Symbols and Homoiconicity: Quoting lists

4, Homoiconicity for Meta-programming
5. Case Study: Symbolic derivation

)

1. begin, set! and mutable state

2. Objects as closures

3. Environment diagrams. box-and-pointer diagrams
4, (Infinite) streams and lazy evaluation.

3. delay and force.

7

1. Continuations

2. call-with-current-continuation
3. An implementation of

1. goto,

2. yield.

3. coroutines

4, exception handling

8

1. Goncrete vs. Abstract Syntax

2. Meta circular interpretation

3. The analyring interpreter (i.ec. compiler)

4. CPS interpretation and semantics of
call-with-current-continuation

9

1. A lazy evaluation version of Scheme +

thunkified interpreter
2. A nondecterministic version of Scheme +
continuation-barsed interpreter

1. \-expressions and P-reduction

2. Computability in A\-calculus:
a construction of functional programming languagers
3. Recursion and the fFixed-point Theorem.

