
Chapter 0

Prelude

1

Computational Processes

• Abstract beings that inhabit computers

• Manipulate data

• Directed by a program

• Written in a programming language

2

The Tool of this Course: Scheme

• Dialect of Lisp (1958)

• Proposed in 1975

• Extremely powerful and elegant

• Standardized into RnRs

• Many implementations available

• Allows you to “go meta”

R6Rs

I use DrRacketactual goal of
this course

3

Study Material

• Chapters 1, 2, 3, 5, 6: Structure and
Interpretation of Computer Programs
(Gerald Jay Sussman and Hal Abelson):
chapters 1, 2, 3, 4

• Chapters 4, 7: Slides + notes in classroom

4

Chapter 1: Fundamentals of

Higher Order Programming

1. Scheme S-expressions, Function definitions

2. Lexical Scoping vs. dynamic scoping

3. Iteration as Optimised Tail Recursion

4. Higher Order Procedures and Anonymous Lambda’s.

5

Chapter 2: Advanced Higher Order

Programming

1. Cons-cells, lists and nested lists.

2. List processing and Higher Order List Procedures

3. Symbols and Homoiconicity: Quoting Lists

4. Homoiconicity for Meta-programming

5. Case Study: Symbolic derivation

6

Chapter 3: Fundamental Concepts of

State, Scoping and Evaluation Order

1. begin, set! and mutable state

2. Objects as closures

3. Environment diagrams, box-and-pointer diagrams

4. (Infinite) streams and lazy evaluation.

5. delay and force.

7

Chapter 4: Continuations and

current-continuations

1. Continuations

2. call-with-current-continuation

3. An implementation of

1. goto,

2. yield,

3. coroutines

4. exception handling

8

Chapter 5: Semantics of

Higher-Order Languages

1. Concrete vs. Abstract Syntax

2. Meta circular interpretation

3. The analysing interpreter (i.e. compiler)

4. CPS interpretation and semantics of  
call-with-current-continuation

9

Chapter 6: Variations

on the Semantics

1. A lazy evaluation version of Scheme +  
thunkified interpreter

2. A nondeterministic version of Scheme +  
continuation-based interpreter

10

Chapter 7: Introduction to the

λ-calculus

1. λ-expressions and β-reduction

2. Computability in λ-calculus:  
a construction of functional programming languages

3. Recursion and the Fixed-point Theorem.

11

