
Declaring and Enforcing Dependencies
Between .NET Custom Attributes

Vasian Cepa and Mira Mezini

Software Technology Group, Department of Computer Science
Darmstadt University of Technology, Germany
{cepa,mezini}@informatik.tu-darmstadt.de

Abstract. Custom attributes as e.g., supported by the .NET framework
complemented by pre- or post-processing tools can be used to integrate
domain-specific concepts into general-purpose language technology, rep-
resenting an interesting alternative to domain-specific languages in sup-
porting model-driven development. For this purpose, it is important that
dependency relationships between custom attributes, e.g., stating that a
certain attribute requires or excludes another attribute, can be specified
and checked for during model processing (compilation). Such dependen-
cies can be viewed as an important part of expressing the meta-model of
the domain-specific concepts represented by custom attributes.

In this paper, we present an approach to specifying and enforcing de-
pendencies between .NET custom attributes, which naturally extends
the built-in .NET support. In this approach, dependencies are specified
declaratively by using custom attributes to decorate other custom at-
tributes. Once the dependency declaration is made part of the custom
attribute support, one can write tools that enforce dependencies based
on .NET meta-program API-s like CodeDom or Reflection. In this paper,
we present such a tool, called ADC (for attribute dependency checker).

1 Introduction

.NET [24] has native support for introducing custom attributes [13] which can be
used to decorate program elements. Elsewhere [26], we have argued that custom
attributes combined with API-s like Reflection and CodeDom1 provide built-
in support for integrating domain specific abstractions without the burden of
rewriting the parser and/or the compiler of the language.

For illustration, assume that we want to extend an object-oriented language
with constructs that facilitate building web services. In the simple example of
Fig. 1 we have introduced two new keywords webservice and webmethod for this
purpose which are used to define the TravelAgent as a web service component.
While nice to have, this extension requires that the programmer understands
and modifies the existing grammar rules to add support for the new keywords
to the parser.

1 All non cited references about .NET come from MSDN [22] documentation.

G. Karsai and E. Visser (Eds.): GPCE 2004, LNCS 3286, pp. 283–297, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

284 Vasian Cepa and Mira Mezini

webservice TravelAgent {

...

webmethod GetHotels(){...}

...

}

Fig. 1. A domain-specific extension to implement web services

With attributes being built-in elements of the general purpose .NET pro-
gramming framework, new (domain specific) abstractions can be expressed by
annotating existing language elements. Meta-programming APIs can than be
used to build transformers that identify decorated elements and transform the
AST to integrate the semantics of the attributes. Hence, a language framework
with support for attributes is capable of expressing executable (domain-specific)
models, representing an interesting alternative to implementing domain-specific
languages by means of traditional compiler development tools.

In a .NET language that supports attributes like C# we would write the
same web service extensions of Fig. 1 by introducing two custom attributes as
shown in Fig. 2. The TravelAgent class itself is decorated with the attribute
[WebService], whereas its public methods that constitute the web service in-
terface should have a [WebMethod] attribute. Introducing new attributes is sup-
ported by .NET compilers, thus, we do not need to deal with grammar modi-
fication issues which makes it easier to extend a .NET language like C# with
domain-specific constructs.

[WebService]

class TravelAgent {

...

[WebMethod]

public void GetHotels(){...}

...

}

Fig. 2. A web service class with two inter-depended attributes

.NET follows a hybrid approach with respect to attributes: It distinguishes
between predefined and custom attributes. Predefined attributes are used by
various API-s of the .NET platform. For example, [System.Diagnostics.Con-
ditionalAttribute] is used by the preprocessor to condition the inclusion
of methods in the compiled version. The compiler relies on attribute provider
libraries to interpret the predefined attributes. In contrast to predefined at-
tributes, custom attributes do not, in general, have a meaning to the compiler.
Code to interpret a custom attribute has to be implemented by the developer
that uses the attribute to introduce domain-specific concepts. Given that in
.NET an attribute is defined in a class, the interpretation code can be placed in-
side the attribute class itself; however, when we need a bigger context to properly
interpret the attribute, we place the interpretation code in a separate module.

Declaring and Enforcing Dependencies Between .NET Custom Attributes 285

We observe that there is some custom attribute interpretation code which
is so common place and general that we may need to repeat it over and over.
An example which we are concerned with in this paper is code needed to en-
force dependencies between attributes, requiring e.g., that a certain attribute
is present in the program hierarchy before another attribute can be used. A
grammar rule such as webservice := webmethod+ explicitly defines a context
relation between webservice and webmethod. That is, a web method will ap-
pear only inside a web service and vice-versa, a web service will contain web
methods. Depending on whether we consider the class or its methods, there are
two constrains we want to enforce: (a) public methods of a class decorated as
[WebService] should be decorated with the [WebMethod] attribute, (b) any
method decorated with a [WebMethod] attribute should be declared within a
class decorated with the [WebService] attribute. That is, the two attributes
are inter-dependent. In general, however, the dependency relation need not be
symmetric.

Specifying dependency relationships between custom attributes and check-
ing for them during model processing (compilation) is important, in order to
make effective use of custom attributes for supporting modeling with domain-
specific abstractions directly at the code level. Such dependencies can be viewed
as an important part of expressing the meta-model of the domain-specific con-
cepts represented by custom attributes. Furthermore, specifying such dependen-
cies is important to support feature-oriented modeling [15]. If we assume that
feature-specific models are expressed in terms of custom attributes correspond-
ing to domain-specific concepts, then expressing feature dependency relation-
ships, requires a means to express and enforce respective dependencies between
attributes.

How can attributed dependencies specified and checked? One can leave it
to each specific transformer tool which will process the tag-decorated code to
check dependencies between attributes. However, with this alternative the de-
pendencies are not explicitly specified and we have to repeat the same checking
logic in every transformer. A better alternative would be to declaratively specify
dependencies as we do with grammar rules and process such specifications in a
generic way before/after the compilation of the decorated code, but before the
attributes are processed. Extending the .NET support for attributes to enable
declaring and checking dependency constraints between custom attributes based
on the second alternative is the main contribution of this paper. We do so in a
way that is natural for .NET attribute programmers, without introducing any
external notation apart from what is already present in .NET.

Instead of requiring that developers of transformation tools repeat depen-
dency checks over and over, we propose to extend .NET with a new custom
attribute, that allows to express such relations declaratively by decorating the
involved attributes. This is similar to the use of the predefined [System.Attri-
buteUsageAttribute] used in .NET to decorate a custom attribute, providing
information about the lexical scope in which the attribute at hand can be used.
Based on these usage attributes, any time a custom attribute is encountered in

286 Vasian Cepa and Mira Mezini

a program, the compiler can check, if it is being used in the right lexical context
and report an error if this is not the case.

We adopt the idea underlying [System.AttributeUsageAttribute] to in-
troduce new custom checks, now using custom attributes. That is, given that in
.NET attributes are themselves program elements, we recursively use the mecha-
nism of decorating program elements with attributes to extend the .NET support
for attributes with dependency declarations. Using custom attributes to decorate
other custom attributes is a natural way to extend .NET’s attribute support.
Given that we cannot change the compiler, we need a way to interpret such
dependency attributes. This can be done with a pre-processor tool which ap-
plies the checks before the compilation using CodeDom2, or with a post-processor
tool which applies the checks after the compilation, given that .NET saves the
attribute information as part of the IL (Intermediate Language) meta-data.

The technique frees the programmer that writes attribute interpreters from
repeating code by centralizing checks to be part of the compilation process; the
programmer only declares the dependencies without taking care of how they
are resolved and enforced. There are of course many ways to declare and enforce
such architectural dependencies [21]. However, using attributes to decorate other
attributes is a very natural way for .NET.

The remainder of the paper is organized as follows. Sec. 2 presents our de-
pendency constraint model, and shows by means of examples how our model can
be used to specify dependency relationships between domain specific concepts
expressed via attributes. Sec. 3 presents ADC - an attribute dependency checker
tool for enforcing dependencies based on our dependency model. Sec. 4 presents
related work. We summarize the paper in Sec. 5.

2 The Attribute Dependency Model

We distinguish between (a) required dependencies - stating that a given attribute
requires another one in order to be used, and (b) disallowed dependencies -
stating that a given attribute cannot be used, if another attribute is present.
Furthermore, children nodes in a program’s structural hierarchy can declare
dependency constrains for parents of any level, and vice-versa. An attribute of a
certain program element instance may require that certain attributes are present
in the set of the attributes of the structural children of the program element at
hand. For example, a Class attribute may require a certain attribute to be
present in the class’ Methods. The reverse is also true: An attribute of a child
structural element instance may require a certain attribute to be present in the
set of the attributes specified for the parent instance. In our model, we generalize
these notions to any depth of the structural tree.

On the contrary, sibling nodes in a program’s structural hierarchy are not
allowed to put constraints on their respective attributes. The attributes of a pro-
gram element instance cannot place any constrain on the attributes of sibling
instances. For example, the attributes that a Field instance is decorated with
2 When ICodeParser is implemented.

Declaring and Enforcing Dependencies Between .NET Custom Attributes 287

cannot imply anything about the attributes of Method instances or attributes
of other Field instances. In the same structural level we cannot say anything
about the siblings that will be there. However, the attributes of a program ele-
ment instance can place constrains on other attributes of the same instance. For
example, a method attribute am1 of a method m may require another attribute
am2 to be present for m.

The semantics of the disallowed relation on the structural tree elements and
instances can be specified similarly and will not be repeated here.

2.1 The [DependencyAttribute] Class

.NET custom attributes are classes derived from the class System.Attribute.
They may have arguments specified either as constructor parameters - unnamed
arguments -, or as properties of the attribute class which generate getter and
setter methods in C# - named arguments. Attribute classes may also contain
methods and state like any other class. Using properties to specify attribute
arguments is more flexible than using constructors. The reason is that .NET
does not support complex types to be passed as parameters to the construc-
tors3. Hence, we define an attribute class DependencyAttribute4 which has one
Required* and one Disallowed* property for each program element type for
which attributes are supported, as shown in Fig. 3. Given that the number of
the node types in a program’s structural tree (Assembly, Class, Method, etc.)
is limited, it makes sense to enumerate such operations. This makes the code
easier to understand compared to having a single dependency property for all
meta-element types.

[AttributeUsage(AttributeTargets.Class)]

public class DependencyAttribute : System.Attribute {

...

public DependencyAttribute() {...}

public Type[] RequiredAssemblyAttributes {...}

public Type[] DisallowedAssemblyAttributes {...}

public Type[] RequiredClassAttributes {...}

public Type[] DisallowedClassAttributes {...}

public Type[] RequiredMethodAttributes {...}

public Type[] DisallowedMethodAttributes {...}

}

Fig. 3. The implementation of dependency attribute

3 Only basic constant types and System.Type can be used. System.Object is also listed
in the documentation because it is the parent of simple types and of System.Type.
However, this does not mean that arbitrary objects can be passed as constructor
parameters.

4 When used in code the suffix Attribute may be omitted from the name of an
attribute class.

288 Vasian Cepa and Mira Mezini

However, the current .NET implementation seems to restrict the complexity
of the validation logic that one can implement inside a property of a custom
attribute. It is unclear in the .NET documentation whether that code is ever
activated. Furthermore, we found that if the code inside a property is more
than a simple assignment, that property may be not included in the attribute
class without warnings from the compiler. Thus, we must keep the code of the
DependencyAttribute properties simple and postpone checks, e.g., that the
attributes passed as a parameter to a property have the right [System.Attri-
buteUsageAttribute] target5, until the dependency checking is performed.

The DependencyAttribute only stores the required/disallowed attribute ar-
rays and implements only code for printing these arrays as strings needed for
error and log reporting. It does not implement any code to interpret the depen-
dencies and its implementation has no other module dependencies. As a con-
sequence, DependencyAttribute is independent of any particular dependency
checker implementation and can be distributed and used alone to decorate at-
tribute libraries.

The current implementation of our dependency model only supports Asse-
mblies, Classes and Methods. Adding support for Fields is trivial (see the
implementation details in the next section). Readers familiar with .NET may
note that we have skipped namespace-s6 in the list above. The reason is that a
namespace is a logical rather than a physical concept, so even though we can
theoretically decorate a namespace with attributes, practically there is not a
single physical place where to store the attributes, since a namespace may be
expanded in many modules and assemblies7.

2.2 Using the Dependency Attribute

Fig. 4 shows how the DependencyAttribute can be used in code to enforce the
dependency semantics of the attributes [WebService] and [WebMethod] from
the example in Fig. 2. Note the use of the C# ’typeof’ operator to obtain an
instance of the class type of each attribute.

The following example shows how other checks involving declarative at-
tributes can be expressed using the dependency attribute. It is motivated by
implementation restrictions of the EJB [7] container programing model. The EJB
specification states, among other restrictions, that components whose instances
will be managed as virtual instances [20] should not pass this as a parameter
or return value; the underlying idea is that it makes no sense to return a direct
pointer to an object that will be reused with other internal state later by the
container.
5 E.g., AttributeTargets.Method should be present in the declaration of an attribute

included in the list RequiredMethodAttributes.
6 For readers with a Java background namespace maps roughly to a package; an
Assembly maps roughly to a JAR file; the Assembly attributes map roughly to
custom JAR manifest entries.

7 This is the reason why .NET does not list namespace as an entry in the
AttributeTargets enumeration.

Declaring and Enforcing Dependencies Between .NET Custom Attributes 289

[Depedency(RequiredMethodAttributes(new Type[]{typeof(WebMethod)})]

[AttributeUsage(AttributeTargets.Class)]

class WebService : System.Attribute { ... }

[Depedency(RequiredClassAttributes(new Type[]{typeof(WebService)})]

[AttributeUsage(AttributeTargets.Method)]

class WebMethod : System.Attribute { ... }

Fig. 4. Using the dependency attribute

While the EJB implementations currently do not rely on tags, we can imag-
ine that tags are used in the same way as EJB marking interfaces [14]8. Let us
suppose that the lifetime of an instance of a class is going to be managed by
the container only when the class declaration is decorated with the tag [Vir-
tualInstance] (Fig. 5). For a class C tagged with the attribute [VirtualInsta-
nce], the restriction about this must hold. We express this requirement explicitly
by means of a new tag [NoThis]. Let us suppose that the method initialize()
of class C is invoked by the container when a virtual instance need to be initial-
ized. We place no restrictions on this method’s signature, but annotate it with a
[InitInstance] attribute to distinguish it for later processing. In this context,
we use [NoThis] as an attribute for decorating program elements and use the
dependency attribute to state that it is required whenever [VirtualInstance]
and/or [InitInstance] are used, as in Fig. 6.

[VirtualInstance]

class C {

...

[InitInstance]

public C initialize(Id id){...}

...

}

Fig. 5. A class that requires virtual instance support

That is, we require [NoThis] to be used explicitly in order to check this
restriction. Optimally, [NoThis] should be used as a meta-attribute to deco-
rate the attributes [VirtualInstance] and [InitInstance], i.e., at the same
abstraction level as [DependencyAttribute], letting an extra tool to check for
it. However, this is out of the scope of the discussion here, since all we are in-
terested in is to use the EJB restriction “not allowed to pass this” only as a
means to illustrate the dependency attribute. The less declarative notation by
using the [DependencyAttribute] does not remove the need that the corre-
sponding container transformer must later enforce [NoThis] semantics in the
appropriate way. It only offers a first and quick automated test of the correct
usage, which saves us from defining a tool for only enforcing declaratively the

8 Actually, Java 1.5 annotations will be used in EJB 3.0 instead of marking interfaces.

290 Vasian Cepa and Mira Mezini

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method)]

class NoThis : System.Attribute { ... }

[Depedency(RequiredMethodAttributes(new Type[]{typeof(NoThis)})]

[AttributeUsage(AttributeTargets.Class)]

class VirtualInstance : System.Attribute { ... }

[Depedency(RequiredClassAttributes(new Type[]{typeof(VirtualInstance)}),

RequiredMethodAttributes(new Type[]{typeof(NoThis)})]

[AttributeUsage(AttributeTargets.Method)]

class InitInstance : System.Attribute { ... }

Fig. 6. Using dependency attribute to check [NoThis] constraints

[NoThis] attribute semantics. Of course, the price of this convenience is that
the programmer must then use [NoThis] explicitly in code.

The example illustrates also the non-symmetry of the dependency relation as
the [VirtualInstance] class attribute requires [NoThis] method attribute to
be present, but [NoThis] method attribute can be used also in methods inside
classes that do not have a [VirtualInstance] attribute.

3 The Attribute Dependency Checker (ADC) Tool

The Attribute Dependency Checker (ADC) tool, which can be downloaded from
[27], is implemented as a post-processor using the Reflection API. After the
code is compiled and linked one can run the ADC tool over the IL binaries to
detect dependency errors, if any. Alternatively, ADC could be implemented as
a pre-processor tool to be run before the source is compiled using the CodeDom
API9.

Fig. 7 shows the classes of ADC and their relations. Almost all the logic of
the dependency checker is found in the abstract class AttributeDependency-
Checker. It uses several helper classes and interfaces (a) to filter the processed
elements (IDependencyFilter), (b) to log information about the progress of the
checking process (ICheckLogger), and (c) to report errors (ErrorReport). The
IContextMap class encapsulates the meta-model structure in a single place using
a special internal coding. For illustration, Fig. 8 shows how the ADC library can
be used to check the attribute dependency constrains for all elements of a given
.NET assembly.

In order to implement the semantics of the dependency attribute we need to
first build the dependency sets for each structural element by processing the el-
ement and all its structural children. After the dependency sets are constructed,
we can check the dependency constrains of the element. That is, we need a post-
order transversal of the structural tree. A boolean flag in AttributeDepen-
dencyChecker controls whether the inherited attributes of the structural el-
ements are processed. The actions performed during a call to the Check(t)

9 A third party implementation of ICodeParser for C# is presented in [12].

Declaring and Enforcing Dependencies Between .NET Custom Attributes 291

ADCAssembly ADCClass ADCMethod

1..* 1..*

DefaultDependecyFilter

<<abstract>>

AttributeDependencyChecker

Check(...)
ProcessEnterElement (...)
ProcessSubElements (...)
CheckConstrains (...)

<<interface>>

ICheckLogger
Log(...)

<<utility>>

IContextMap
Index(...)

<<interface>>

IDependecyFilter

CanProcess (...)

ErrorReport

EnterContext (...)
AddError (...)
LeaveContext (...)

Fig. 7. The run-time attribute dependency checker structure

Assembly a = ...; // obtain an assembly

ADCAssembly c = new ADCAssembly();

c.Filter = ...;

c.Logger = ...;

c.Check(a);

if(c.errors.HasWarnings())

{ // process: c.errors.GetWarnings() ... }

if(c.errors.HasErrors())

{ // process: c.errors.GetErrors() ... }

Fig. 8. Using the run-time attribute dependency checker in code

method, where t is the current program element whose attribute dependencies
are being checked for, are illustrated in Fig. 9.

First, the filter object is used to check whether the element at hand should
be processed (step (2) in Fig. 9). Filters can be used to put arbitrary constrains
on the elements that will be processed, e.g., using pattern matching on names.
The DefaultDependencyFilter processes all the elements. The ADC tool uses
a customized filter called ClassDependecyFilter derived from DefaultDepen-
dencyFilter that can restrict checking to a subset of classes whose names are
given in the command line. More sophisticated filters can be written and used in
a programmatic way. Filters can also be used to implement profiling by keeping
track of various counters; e.g., ClassDependecyFilter counts the number of
classes and methods processed.

Next, the call to ProcessEnterElement() (step (3) in Fig. 9) sets the proper
ErrorReport context (explained later) (step (4) in Fig. 9) to be used when
processing the sub-elements of the element at hand. The ProcessSubElements()
method (step (6) in Fig. 9) calls the Check() method of all sub-elements. As
shown in Fig. 7, the specific attribute checkers for different meta-elements, e.g.,

292 Vasian Cepa and Mira Mezini

:AttributeDependencyChecker

Check(t)

:IDependecyFilter

bool CanProcess (t)

:ErrorReport

ProcessEnterElement (t)
EnterContext (...)

:ICheckLogger

Log(...)

ProcessSubElements (...)

CheckConstrains (...)

LeaveContext ()

AddError (...)

(1)
(2)

(3)
(4)

(5)

(6)

(7)
(8)

(9)

Fig. 9. UML sequential diagram of Check() method call

ADCAssembly, ADCClass, etc., are derived form AttributeDependencyChecker,
by implementing the abstract methods: Check(object t), ProcessEnterEle-
ment(object t), and ProcessSubElements(ref ArrayList ctx, object t).
For illustration, Fig. 10 shows the implementation of the ProcessSubElements
method in ADCClass. As we see, only the browsing logic of finding the sub
elements is part of this method.

The context to be used during the processing of a node and its descendants
(the parameter ctx in the signature of ProcessSubElements) is managed in an
ArrayList similarly to the method call stack frames in a compiler [2]. A frame in
a context contains the attributes and the dependency attributes of a particular
element. When we browse the structural tree (by calling ProcessSubElements),
we fill up the context passing it to every processed sub-element. Each element,
when it is processed, can modify the dependency information of context frames
of its parents. When we leave a sub-element its frame is removed from the con-
text. After all sub-elements of a given element are processed we have all the
required information in the context stack frames to check the dependencies of

Declaring and Enforcing Dependencies Between .NET Custom Attributes 293

protected override void ProcessSubElements(ref ArrayList ctx, object t) {

MethodInfo[] m = ((Type)t).GetMethods(

BindingFlags.Instance |

BindingFlags.Public |

BindingFlags.DeclaredOnly |

BindingFlags.NonPublic);

foreach(MethodInfo mi in m) {

ADCMethod adc = new ADCMethod();

CopyStateTo(adc);

adc.InitialContext = ctx;

adc.Check(mi);

}

}

Fig. 10. ADCClass implementation of ProcessSubElements method

the given element. We compare then the actually present attributes with the
total dependency attributes for the current frame, using set operations, in the
CheckConstrains() method (step (7) in in Fig. 9).

The :ErrorReport object maintains its own context (set up in step (4) in
in Fig. 9) so that when an error is reported (step (8) in in Fig. 9) it can be
embedded within the proper structural context. The ErrorReport context is
used to report messages in a useful way, as illustrated by the error message:

| Required CLASS attribute missing:

| adctests.CA01Attribute @ adctests->adctests.nunit.TDependencyUtils

This error message specifies that the required class attribute adctests.CA01-
Attribute is missing in class adctests.nunit.TDependencyUtils, part of
adctests assembly.

By default ErrorReport accumulates the errors, but this behavior can be
changed via a switch, so it will break the checker execution if an error happens
by throwing a ADCException. ErrorReport contains also logic to accumulate or
immediately report the improper usages in code of the parameters passed to the
DependencyAttribute itself. An example is passing an attribute declared with
a class lexical scope as an argument to a RequiredMethodAttribute property.

Finally, the ICheckLogger interface (see step (5) in Fig. 9) allows the pro-
grammer to associate a customized logger with the checker. If the logger is not
null, a hierarchy of the processed elements with details about their attributes
and attribute dependencies is printed. A filter could also be used for custom
logging. All objects shown in Fig. 9, but :AttributeDependecyChecker, are
singletons and are passed to the processing of the sub-elements as part of the
context.

The implementation of the class AttributeDependencyChecker is generic
w.r.t the implementation of both DependencyAttribute and the meta-model
elements, which means that we can reuse its implementation with new attributes

294 Vasian Cepa and Mira Mezini

as well as with other meta-models. The AttributeDependencyChecker achieves
this generality by using a combination of the following three techniques:

– First, all the hierarchy information of the supported meta-model is fac-
tored out into two static methods (tables) of the IContextMap utility class.
AttributeDependencyChecker uses IContextMap to implement a strategy
pattern [6]. By changing the IContextMap class, users can change the sup-
ported meta-model. Theoretically, the information in IContextMap would be
enough to check the dependencies, i.e., no specific checker classes for different
elements of the meta-model, e.g., ADCClass would be needed. However, the
.NET Reflection API design is not consistent in browsing the meta-elements
hierarchy. Unlike other API-s, e.g., XML DOM [4], that have a single base
interface, Node, from which all elements are derived, the .NET Reflection
API does not expose a single generic interface for meta-element types. The
rationale being that the number of meta-elements is limited. However, this
requires that when adding new meta-elements to the ADC library, we need
to derive special classes for them which contain only sub-element browsing
code, as described above.

– Second, given the structure of the meta-model is present in the Dependen-
cyAttribute properties, we use reflection inside the Check(...) method
over any DependencyAttribute properties and map them to the internal
IContextMap context. The use of the reflection ensures that if we add or
remove attributes to the DependencyAttribute class, the implementation
of the AttributeDependencyChecker does not need to be changed. Another
generic alternative would be to generate this code based on the Depen-
dencyAttribute implementation, but this would require to re-generate and
re-compile the AttributeDependencyChecker for every different version of
the DependencyAttribute implementation.

– Third, we use the template method pattern [6] to call abstract methods that
need to be implemented in the derived classes, like the ProcessSubElements
method required to browse the sub-elements. The entire checking logic is part
of the abstract class AttributeDependencyChecker.

The resulting ADC library can be easily extended to support new meta-
elements. If we need to add a new type of checker for attributes of another
meta-element, we need to derive a class from AttributeDependencyChecker, im-
plementing the abstract methods discussed above. In addition, the IContextMap
class needs to be modified to accommodate the hierarchical structural relation
of the new element with the existing elements.

4 Related Work

Using attributes to denote additional custom semantics about an entity is in-
tuitive and is used all around in computer science [16]. Different names used
for attributes, range from tags to annotations. Explicit annotation [1] of source
code elements with attributes falls between domain specific languages [3] and

Declaring and Enforcing Dependencies Between .NET Custom Attributes 295

generative programming techniques. Explicit attributes can extend the model
supported by a generic language, without changing its front-end compiler tools
[28] and can be used to drive code transformations [25]. In OMG MDA [5] tags
are used to mark model elements. In the MDA MOF [29] and UML [8] stan-
dards, tags have no semantics to the standards themselves. They are used during
model transformations as hints by the transformation tools.

Hedin [9] describes how attribute extension grammars can be used to en-
force properties about library components that can not be enforced otherwise
with object-oriented systems. The work is superseded by language technologies
like .NET that directly support attributes and offer API-s to access the AST
information along with the decorated attributes. Our approach is situated at a
higher abstraction level, using attributes to define declarative rules that must
hold between attributes.

Declaring and checking attribute dependencies is one example of explicitly
enforcing architectural principles [21]. In fact, attributes offer a unified way to
express evolution invariants in languages that support explicit annotations, given
that any structural entity can be decorated independently of the syntax. This
makes attributes attractive for expressing law-governed system evolution rules.
We can express architectural principles that must hold between program entities,
as attribute dependencies between architectural attributes used to decorate pro-
gram entities. System wide invariants can be expressed as Assembly attributes
and rules can be expressed by meta-attributes over architectural attributes.

Abadi et al [17] state that there is a central notion of dependency and abstract
any kind of dependency into a Dependency Code Calculus (DCC) based on a
computational lambda calculus. Such a formal abstraction can be interesting
for proving properties of dependent system elements, but it must be specialized
to a specific domain to be of real usage, yielding in different special purpose
calculuses. However, some of the dependency problems mentioned in [17] like
slicing calculus do not map directly into source code program dependencies and
cannot be expressed as source code attributes.

Aspect-oriented programing (AOP) [11] techniques can be also used to en-
force architectural decisions. Its usefulness in program generation [15] is based
on its global view of the system, which is required to enforce system wide proper-
ties. An example how AspectJ [10] (an AOP tool for Java) can be used to enforce
system constrains is given in [18]. However as noted there, there are some system
wide constrains like name capitalization which cannot be enforced directly with
AspectJ. This is because AspectJ abstracts program meta-information between:
(a) pointcut declarations - that encapsulate meta-element selection and context;
and (b) advice implementations - that make implicit meta-element manipulation.
Since the enumeration of all possible meta-operations as declarative constructs is
impossible and was not a design goal of AspectJ, there are meta-level programs
that cannot be expressed as AspectJ programs.

Our declarative attribute approach is a new natural generative pattern [19] to
enforce domain-specific [3] meta-models over attributes. Other problems apart of
attribute dependency can be also generalized at the attribute level. However we

296 Vasian Cepa and Mira Mezini

must note that currently .NET supports only structural elements to be decorated
with attributes. We cannot place attributes inside methods, liming rules that can
be enforced by our approach.

There are also many generic tools like [30, 31] designed for enforcing rules
about a program not covered directly by the programming language mecha-
nisms used. We demonstrated how declarative dependencies can be expressed
as attributes to decorate custom attributes, providing a natural way to extend
language technologies like .NET where attributes are full status entities. Our ap-
proach is however not suited for checking arbitrary program restrictions, which
may require customized imperative implementations.

5 Summary

The .NET compiler support for checking custom attributes is limited. We took
advantage of the fact that .NET attributes are full status types in the .NET
framework, and extended the .NET compiler attribute support with custom
declarative checks using attributes themselves. We showed how to decorate cus-
tom attribute declarations with other attributes that define additional declar-
ative semantics about the custom attributes. This is a natural way to extend
.NET attribute support using pre-processor or post-processor tools, being thus
a convenient alternative for supporting domain-specific language constructs [3]
and various program transformation techniques [23].

We showed how the attribute dependency problem can be formalized and
expressed declaratively as an custom attribute. We described the implementation
of the ADC [27] tool designed to check such dependencies. ADC is implemented
in a very generic and extensible way. Other attribute enforcement checks can be
expressed declaratively in the same way for .NET-like language technologies.

References

1. K. De Volder G. C. Murphy A. Bryant, A. Catton. Explicit Programming. In Proc.
of AOSD ’02, ACM Press, pages 10–18, 2002.

2. A. V. Aho, R. Sethi, J. D. Ullman. Compilers Principles, Techniques and Tools.
Addisson Wesley, 1988.

3. A. van Deursen, P. Klint, J. Visser. Domain-Specific Languages. ACM SIGPLAN
Notices, Volume 35, pages 26–36, 2000.

4. B. McLaughlin. Java and XML. O’Reilly, Second edition, 2001.
5. D. S. Frankel. Model Driven Architecture - Applying MDA to Enterprise Comput-

ing. Wiley, 2003.
6. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley,

1995.
7. E. Roman, S. Ambler, T. Jewell. Mastering Enterprise JavaBeans. Wiley, 2001.
8. G. Booch, I. Jacobson, J. Rumbaugh. The Unified Modeling Language User Guide.

Addison-Wesley, 1998.
9. G. Hedin. Attribute Extension - A Technique for Enforcing Programming Conve-

tions. Nordic Jounral of Computing, 1997.

Declaring and Enforcing Dependencies Between .NET Custom Attributes 297

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold. An
Overview of AspectJ. In Proc. of ECOOP ’01, Springer-Verlag, LNCS 2072, pages
327–353, 2001.

11. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, J. Ir-
win. Aspect-Oriented Programming. In Proc. ECOOP ’97, Springer-Verlag, LNCS
1241, pages 220–243, 1997.

12. I. Zderadicka. CS CODEDOM Parser. http://ivanz.webpark.cz/csparser.html,
2002.

13. J. Liberty. Programming C#. O’Reilly, 2001.
14. J. Newkirk, A. Vorontsov. How .NET’s Custom Attributes Affect Design. IEEE

SOFTWARE, Volume 19(5), pages 18–20, September / October 2002.
15. K. Czarnecki, U. W. Eisenecker. Generative Programming. Addison-Wesley, 2000.
16. D. Knuth. The Genesis of Attribute Grammars. In Proc. of International Workshop

WAGA, 1990.
17. M. Abadi, A. Banerjee, N. Heintze, J. G. Riecke. A Core Calculus of Dependency.

In Proc. of the 26th ACM SIGPLAN-SIGACT on Principles of Programming Lan-
guages (POPL), pages 147–160, 1999.

18. M. Shomrat, A. Yehudai. Obvious or Not? Regulating Architectural Decisions Us-
ing Aspect-Oriented Programming. In Proc. of Aspect-Oriented Software Develop-
ment - AOSD 01, 2001.

19. M. Voelter. A Collection of Patterns for Program Generation. In Proc. EuroPLoP,
2003.

20. M. Voelter, A. Schmid, E. Wolf. Server Components Patterns, Illustrated with EJB.
Wiley & Sons, 2002.

21. N. H. Minsky. Why Should Architectural Principles be Enforced? In Proc. of IEEE
Computer Security, Dependability, and Assurance: From Needs to Solutions, 1998.

22. .NET Framework MSDN Documentation.
ms-help://MS.VSCC/MS.MSDNVS/Netstart/html/sdkstart.htm, 2002.

23. R. Paige. Future Directions in Program Transformations. ACM Computing Sur-
veys, Volume 28, pages 170–170, 1996.

24. J. Prosise. Programming Microsoft .NET. Microsoft Press, 2002.
25. V. Cepa. Implementing Tag-Driven Transformers with Tango. Proc. of 8th Inter-

national Conference on Software Reuse - LNCS 3107, pages 296–307.
26. V. Cepa, M. Mezini. Language Support for Model-Driven Software Development.

(Editor M. Aksit) Special Issue Science of Computer Programming (Elsevier) on
MDA: Foundations and Applications Model Driven Architecture, 2004.

27. .NET Attribute Dependency Checker (ADC) Tool.
http://www.st.informatik.tu-darmstadt.de/static/staff/Cepa/tools/adc/

index.html, 2003.
28. W. Taha, T. Sheard. Multi-stage Programming. ACM SIGPLAN Notices, 32(8),

1997.
29. Meta Object Facility (MOF) Specification Version 1.4. http://www.omg.org, 2002.
30. PMD Java Source Code Scanner. http://pmd.sourceforge.net, 2003.
31. Borland TogetherJ. http://www.borland.com/together/, 2003.

	1 Introduction
	2 The Attribute Dependency Model
	2.1 The {\tt [DependencyAttribute]} Class
	2.2 Using the Dependency Attribute

	3 The Attribute Dependency Checker (ADC) Tool
	4 Related Work
	5 Summary
	References

