
Finding Bugs is Easy

David Hovemeyer and William Pugh
Dept. of Computer Science, University of Maryland

College Park, Maryland 20742 USA
{daveho,pugh}@cs.umd.edu

ABSTRACT
Many techniques have been developed over the years to au-
tomatically find bugs in software. Often, these techniques
rely on formal methods and sophisticated program analysis.
While these techniques are valuable, they can be difficult to
apply, and they aren’t always effective in finding real bugs.

Bug patterns are code idioms that are often errors. We have
implemented automatic detectors for a variety of bug pat-
terns found in Java programs. In this paper, we describe
how we have used bug pattern detectors to find real bugs in
several real-world Java applications and libraries. We have
found that the effort required to implement a bug pattern
detector tends to be low, and that even extremely simple
detectors find bugs in real applications.

From our experience applying bug pattern detectors to real
programs, we have drawn several interesting conclusions.
First, we have found that even well tested code written
by experts contains a surprising number of obvious bugs.
Second, Java (and similar languages) have many language
features and APIs which are prone to misuse. Finally, that
simple automatic techniques can be effective at countering
the impact of both ordinary mistakes and misunderstood
language features.

1. INTRODUCTION
Few people who develop or use software will need to be
convinced that bugs are a serious problem. Much recent re-
search (e.g., [7, 14, 16, 28, 3, 6, 26, 17, 13]) has been devoted
to developing techniques to automatically find bugs in soft-
ware. Many of these techniques use sophisticated analyses
and powerful formalisms.

Our approach to finding bugs is different: we have con-
centrated on using simple, broad techniques rather than
focused, narrow techniques. The principle underlying our
work is that we start by looking at actual bugs in real code,
and then develop ways to find similar bugs. Our goal has

been to better understand what kind of bugs exist in soft-
ware, rather than advancing the state of the art in program
analysis. From this work, we have reached some interesting
and sometimes unexpected conclusions.

First, no type of bug has been so “dumb” or “obvious” that
we have failed to find examples of it in real code. Every bug
detector we have ever implemented has found real bugs. We
have been continually suprised by the obviousness of the
bugs found using our detectors, even in production applica-
tions and libraries.

Second, because of the sheer complexity of modern object-
oriented languages like Java, the potential for misuse of lan-
guage features and APIs is enormous. From our experience
we have concluded that even experienced developers have
significant gaps in their knowledge which result in bugs.

Third, that automatic bug detection tools can serve an im-
portant role in raising the awareness of developers about
subtle correctness issues. So, in addition to finding existing
bugs, they can help prevent future bugs.

In this paper we will describe some of the bug detection tech-
niques we have used, and present empirical results showing
the effectiveness of these techniques on real programs. We
will also show examples of bugs we have found to help il-
lustrate how and why bugs are introduced into software,
and why commonly used quality assurance practices such as
testing and code reviews miss many important bugs.

The structure of the rest of the paper is as follows. In Sec-
tion 2, we discuss the general problem of using automatic
techniques to find bugs in software, and describe a tool,
called FindBugs, which uses bug pattern detectors to inspect
software for potential bugs. In Section 3, we briefly describe
the implementation of our tool and some of its features. In
Section 4, we evaluate the effectiveness of our bug pattern
detectors on several real programs. In Section 5, we offer
observations from our experiences and some of our users’
experiences putting bug pattern detection into practice. In
Section 6, we describe related work. In Section 7 we offer
some conclusions, and describe possibilities for future work.

2. TECHNIQUES FOR FINDING BUGS
There are many possible ways to find bugs in software. Dy-
namic techniques, such as testing and assertions, rely on the
runtime behavior of a program. As such, they are limited



to finding bugs in the program paths that are actually ex-
ecuted. In contrast, static techniques can explore abstrac-
tions of all possible program behaviors, and thus are not
limited by the quality of test cases in order to be effective.

Static techniques range in their complexity and their ability
to identify or eliminate bugs. The most effective (and com-
plex) static technique for eliminating bugs is a formal proof
of correctness. While the existence of a correctness proof is
the best guarantee that the program does not contain bugs,
the difficulty in constructing such a proof is prohibitive for
most programs. Partial verification techniques have been
proposed. These techniques prove that some desired prop-
erty of a program holds for all possible executions. Such
techniques may be complete or incomplete; if incomplete,
then the analysis may be unable to prove that the desired
property holds for some correct programs. Finally, unsound
techniques can identify “probable” bugs, but may produce
false positives and false negatives.

We have implemented a static analysis tool, called Find-
Bugs, that detects instances of bug patterns in Java pro-
grams. Bug patterns are code idioms that are likely to
be errors. We have implemented (unsound) detectors for
a variety of common bug patterns, and used them to find
a significant number of bugs in real-world applications and
libraries. In this section we describe the bug patterns we
detect, and how we implemented and refined detectors for
those patterns.

2.1 Bug Patterns
Bug patterns are error-prone coding practices that arise from
the use of erroneous design patterns, misunderstanding of
language semantics, or simple and common mistakes. As
developers, we tend to believe that any bugs in our code
must be subtle, unique and require sophisticated tools to
uncover. However, our experience has shown that while sub-
tle and unique bugs exist, there are also many errors, even
in production code, that are blatant, well-understood, and
easy to find if you know what to look for. Finding these
errors does not require sophisticated or expensive forms of
analysis or instrumentation. Many of these errors can be
found with trivial static examination, using what we refer
to as a bug pattern detector.

Bug pattern detectors are not judged by whether they are
“right” or “wrong” in any formal correctness point of view.
Rather, they are either effective or ineffective at finding real
bugs in real software. Useful bug pattern detectors can only
be developed in tandem with continual application and eval-
uation of their usefulness in finding bugs in software arti-
facts.

The bug patterns we look for have come from a wide range of
sources. Many of the bug patterns are suggested by Java se-
mantics. A simple example is that it is generally an error to
dereference a null pointer. A number of books ([1, 27, 5, 19,
9]) describe potential Java coding pitfalls. Several of the bug
patterns we implemented in FindBugs were observed in stu-
dent projects in an undergraduate advanced programming
course at the University of Maryland. We have implemented
detectors for several bug patterns suggested by users of our
analysis tool. In general, bug patterns are found through the

process of software development, through the simple obser-
vation that bugs often have common characteristics. When-
ever a bug is fixed, it is worth looking for other places in
the code where a similar bug might be lurking. Bug pattern
detectors put this idea into practice.

2.2 Bug Pattern Detectors
We have implemented 45 bug pattern detectors in our Find-
Bugs tool. All of the bug pattern detectors are implemented
using BCEL [4], an open source bytecode analysis and in-
strumentation library. The detectors are implemented using
the Visitor design pattern; each detector visits each class of
the analyzed library or application. Broadly speaking, each
detector falls into one or more of the following categories:

• Single-threaded correctness issue

• Thread/synchronization correctness issue

• Performance issue

• Security and vulnerability to malicious untrusted code

Our work has focused on understanding bug patterns and
the evaluating the feasibility of detecting them, rather than
on developing a sophisticated analysis framework. For this
reason, we have tried to use the simplest possible tech-
niques to find instances of bug patterns. The implemen-
tation strategies used by the detectors can be divided into
several rough categories:

• Class structure and inheritance hierarchy only.
Some of the detectors simply look at the structure of
the analyzed classes without looking at the code.

• Linear code scan. These detectors make a linear
scan through the bytecode for the methods of analyzed
classes, using the visited instructions to drive a state
machine. These detectors do not make use of complete
control flow information; however, heuristics (such as
identifying the targets of branch instructions) can be
effective in approximating the effects of control flow.

• Control sensitive. These detectors make use of an
accurate control flow graph for analyzed methods.

• Dataflow. The most complicated detectors use dataflow
analysis to take both control and data flow into ac-
count. An example is the null pointer dereference de-
tector.

None of the detectors make use of analysis techniques more
sophisticated than what might be taught in an undergradu-
ate compiler course. The detectors that use dataflow anal-
ysis are the most complex; however, we have implemented
a framework for dataflow analysis which moves most of the
complexity out of the detectors themselves. The most com-
plex detector has 679 lines of Java source code (including
blank lines and comments). Almost half of the detectors
have less than 100 lines of source code.



Code Description
Eq Bad Covariant Definition of Equals
HE Equal Objects Must Have Equal Hashcodes
IS2 Inconsistent Synchronization
MS Static Field Modifiable By Untrusted Code
NP Null Pointer Dereference
OS Open Stream
RR Read Return Should Be Checked
RV Return Value Should Be Checked
UR Uninitialized Read In Constructor
UW Unconditional Wait
Wa Wait Not In Loop

Figure 1: Summary of selected bug patterns

2.3 Selected Bug Pattern Detectors
For space reasons, we will only discuss a handful of our
detectors. Each detector/pattern is identified by a short
“code”, which will be used in the evaluation in Section 4. A
table summarizing the bug patterns and detectors described
in this paper is shown in Figure 1.

2.3.1 Bad Covariant Definition of Equals (Eq)
Java classes may override the equals(Object) method to
define a predicate for object equality. This method is used
by many of the Java runtime library classes; for example, to
implement generic containers.

Programmers sometimes mistakenly use the type of their
class Foo as the type of the parameter to equals():

public boolean equals(Foo obj) {...}

This covariant version of equals() does not override the
version in the Object class, which may lead to unexpected
behavior at runtime, especially is the class is used with one
of the standard collection classes which expect that the stan-
dard equals(Object) method is overridden.

This kind of bug is insidious because it looks correct, and in
circumstances where the class is accessed through references
of the class type (rather than a supertype), it will work
correctly. However, the first time it is used in a container,
mysterious behavior will result. For these reasons, this type
of bug can elude testing and code inspections.

Detecting instances of this bug pattern simply involves ex-
amining the method signatures of a class and its super-
classes.

2.3.2 Equal Objects Must Have Equal Hashcodes
(HE)

In order for Java objects to be stored in HashMaps and HashSets,
they must correctly implement both the equals(Object)

and hashCode() methods. Objects which compare as equal
must have the same hashcode.

Consider a case where a class overrides equals() but not
hashCode(). The default implementation of hashCode() in
the Object class (which is the ancestor of all Java classes)

returns an arbitrary value assigned by the virtual machine.
Thus, it is possible for objects of this class to be equal with-
out having the same hashcode. Because these objects would
likely hash to different buckets, it would be possible to have
two equal objects in the same hash data structure, which
violates the semantics of HashMap and HashSet.

As with covariant equals, this kind of bug is hard to spot
through inspection. There is often nothing to “see”; the mis-
take lies in what is missing. Because the equals() method
is useful independently of hashCode(), it can be difficult for
novice Java programmers to understand why they must be
defined in a coordinated manner. This illustrates the im-
portant role tools can play in educating programmers about
subtle language and API semantics issues.

Automatically verifying that a given class maintains the in-
variant that equal objects have equal hashcodes would be
very difficult. Our approach is to check for the easy cases,
such as

• Classes which redefine equals(Object) but inherit the
default implementation of hashCode()

• Classes which redefine hashCode() but not equals(Object)

Checking for these cases requires simple analysis of method
signatures and the class hierarchy.

2.3.3 Inconsistent Synchronization (IS2)
Many Java classes, both in runtime libraries and applica-
tions, are designed to be safe when accessed by multiple
threads. The most common way to ensure thread safety is
for methods of an object to obtain a lock on the object itself.
In this way, methods are guaranteed mutual exclusion even
when invoked by different threads.

A common category of mistakes in implementing thread safe
objects is to allow access to mutable fields without synchro-
nization. The detector for this bug pattern looks for such
errors by analyzing accesses to fields to determine which ac-
cesses are made while the object’s self lock is held. Fields
which are sometimes accessed with a self lock held and some-
times without are candidate instances of this bug pattern.
We use heuristics to reduce the number of false positives:

• Public fields are ignored

• Volatile fields are ignored

• Fields that are never read without a lock are ignored

• Accesses in object lifecycle methods (such as construc-
tors and finalizers), or in nonpublic methods reachable
only from object lifecycle methods, are ignored

In order to avoid reporting fields which are only inciden-
tally locked, we ignore fields for with a high (1/3 or more)
proportion of unlocked accesses, according to the formula

2(RU + 2WU) > (RL + 2WL)



// GNU classpath 0.06,

// java.util

// Vector.java, line 354

public int lastIndexOf(Object elem) {

return lastIndexOf(

elem, elementCount - 1);

}

Figure 2: Example of inconsistent synchronization

where RU and WU are unlocked reads and writes, and RL
and WL are locked reads and writes. This formula gives
higher precedence to writes, since they are less frequent than
reads.

This detector is more complicated than any other. It uses
dataflow analysis to determine where locks are held and to
determine which objects are locked, since the analysis re-
lies on being able to determine when a lock is held on the
reference through which a field is accessed. We perform re-
dundant load elimination to determine when a value loaded
from a field is likely to be the same value as that of an ear-
lier load of the same field; without this analysis, the detector
would report false positives for references of the form

synchronized (x) {

... = x.f;

x.g = ...

}

where x is a field. The detector uses a whole program
analysis, since fields may be accessed from classes other than
the class in which they are defined.

The inconsistent synchronization detector is interesting be-
cause inferring whether or not a class is intended to be
thread-safe in the absence of specifications is difficult. The
detector relies on the fact that synchronizing on the this

reference is a common idiom in Java, and uses heuristics to
make an educated guess about whether synchronization is
intended or incidental.

An example of inconsistent synchronization is seen in Fig-
ure 2. This method is in the Vector class of the GNU Class-
path library, version 0.06. The Vector class is specified as
being thread safe. Most of the accesses to the class’s fields
are protected by synchronizing on the the object’s this ref-
erence. In the code shown, the elementCount field is ac-
cessed without synchronization. The bug is that because
of the lack of synchronization, the element count may not
be accurate when it is passed to the lastIndexOf(Object,

int) method (which is synchronized). This could result in
an IndexOutOfBoundsException.

In the development of the FindBugs tool, we have run it
regularly on several applications and libraries, tracking new
releases of those packages as they are made available. We
have noticed that it is fairly common for programmers not
to understand the synchronization requirements of classes
when they are performing maintenance (to fix bugs or add

new features), and we have seen a number of synchronization
bugs introduced this way. Detectors such as the inconsis-
tent synchronization detector can serve as a useful safeguard
against the introduction of bugs during code evolution.

2.3.4 Static Field Modifiable By Untrusted Code (MS)
This problem describes situations where untrusted code is
allowed to modify static fields, thereby modifying the be-
havior of the library for all uses. There are several possible
ways this mutation is allowed:

• A static non-final field has public or protected access.

• A static final field has public or protected access and
references a mutable structure such as an array or
Hashtable.

• A method returns a reference to a static mutable struc-
ture such as an array or Hashtable.

For example, Sun’s implementation of java.awt.Cursor has
a protected static non-final field predefined that caches ref-
erences to 14 predefined cursor types. Untrusted code can
extend Cursor and freely modify the contents of this array
or even make it point to a different array of cursors. This
would allow, for example, any applet to change the cursors in
a way that would affect all applets displayed by the browser,
possibly confusing or misleading the user.

2.3.5 Null Pointer Dereference (NP)
Calling a method or accessing an instance field of a null
value results in a NullPointerException at runtime. This
detector looks for instructions where a null reference might
be dereferenced.

Our implementation of the detector for this pattern uses a
straightforward dataflow analysis. The analysis is strictly
intraprocedural; it does not try to determine whether pa-
rameters to a method could be null, or whether return val-
ues of called methods could be null. The detector takes if
comparisons into account to make the analysis more precise.
For example, in the code

if (foo == null) {

...

}

the detector knows that foo is null inside the body of the
if statement.

Two types of warnings are produced. Null pointer derefer-
ences that would be guaranteed to occur given full statement
coverage of the method are assigned high priority. Those
guaranteed to occur given full branch coverage of the method
are assigned medium priority. False warnings are possible
because the detector may consider infeasible paths.

An example of a null pointer dereference found by the de-
tector is shown in Figure 3. We were surprised to find that a
bug this obvious could find its way into a mature, well-tested



// Eclipse 2.1.0,

// org.eclipse.jdt.

// internal.ui.javaeditor,

// ClassFileEditor.java, line 225

if (entry == null) {

IClasspathContainer container=

JavaCore.getClasspathContainer(

entry.getPath(), // entry is null!

root.getJavaProject());

Figure 3: Example of null pointer dereference

// Sun JDK 1.5 build 18,

// java.awt, MenuBar.java, line 164

if (m.parent != this) {

add(m);

}

helpMenu = m;

if (m != null) {

...

Figure 4: A redundant null comparison.

application. However, this was only one of a significant num-
ber of similar bugs we found in Eclipse.

In addition to finding possible null pointer dereferences, this
detector also identifies reference comparisons in which the
outcome is fixed because either both compared values are
null, or one value is null and the other non-null. Although
this will not directly result in misbehavior at runtime, it very
often indicates confusion on the part of the programmer, and
may indicate another error indirectly. (This phenomenon is
described in greater detail in [28].) Figure 4 shows some code
from the java.awt.MenuBar class from Sun JDK 1.5 build
18. Here the code manifests the implicit belief that m is not
null, because the parent field is accessed, and later that it
might be null because it is explicitly checked. Because the
beliefs contradict, one must be incorrect.

2.3.6 Open Stream (OS)
When a program opens an input or output stream, it is
good practice to ensure that the stream is closed when it
becomes unreachable. Although finalizers ensure that Java
I/O streams are automatically closed when they are garbage
collected, there is no guarantee that this will happen in a
timely manner. There are two reasons why streams should
be closed as early as possible. First, operating system file
descriptors are a limited resource, and running out of them
may cause the program to misbehave. Another reason is
that if a buffered output stream is not closed, the data stored
in the stream’s buffer may never be written to the file (be-
cause Java finalizers are not guaranteed to be run when the
program exits).

The Open Stream detector looks for input and output stream
objects which are created (opened) in a method and are not
closed on all paths out of the method. The implementation
uses dataflow analysis to determine all of the instructions

// DrJava stable-20030822

// edu.rice.cs.drjava.ui

// JavadocFrame.java, line 97

private static File _parsePackagesFile(

File packages, File destDir) {

try {

FileReader fr =

new FileReader(packages);

BufferedReader br =

new BufferedReader(fr);

...

// fr/br are never closed

Figure 5: Example of open stream

reached by the definitions (creation points) of streams cre-
ated within methods, and to track the state (nonexistent,
created, open, closed) of those streams. If a stream in the
open state reaches the exit block of the control flow graph
for a method, we emit a warning.

To reduce false positives, we ignore certain kinds of streams.
Streams which escape (are passed to a method or assigned
to a field) are ignored. Streams that are known not to corre-
spond to any real file resource, such as byte array streams,
are ignored. Finally, any stream transitively constructed
from an ignored stream is ignored (since it is common in
Java to “wrap” one stream object with another).

An example of a bug found by this detector is shown in
Figure 5. The FileReader object is never closed by the
method.

2.3.7 Read Return Should Be Checked (RR)
The java.io.InputStream class has two read() methods
which read multiple bytes into a buffer. Because the number
of bytes requested may be greater than the number of bytes
available, these methods return an integer value indicating
how many bytes were actually read.

Programmers sometimes incorrectly assume that these meth-
ods always return the requested number of bytes. However,
some input streams (e.g., sockets) can return short reads. If
the return value from read() is ignored, the program may
read uninitialized/stale elements in the buffer and also lose
its place in the input stream.

One way to implement this detector would be to use dataflow
analysis to determine whether or not the location where the
return value of a call to read() is stored is ever used by
another instruction. Because our primary aim is to under-
stand bug patterns and the ways in which they manifest,
and not to develop a comprehensive analysis framework,
we instead chose a much simpler implementation strategy.
The detector for this bug pattern is implemented as a sim-
ple linear scan over the bytecode. If a call to a read()

method taking a byte array is followed immediately by a POP

bytecode, we emit a warning. As a refinement, if a call to
InputStream.available() is seen, we inhibit the emission
of any warnings for the next 70 instructions. This eliminates



// GNU Classpath 0.06

// java.util

// SimpleTimeZone.java, line 780

int length = input.readInt();

byte[] byteArray = new byte[length];

input.read(byteArray, 0, length);

if (length >= 4)

...

Figure 6: An example of read return ignored

some false positives where the caller knows that the input
stream has a certain amount of data available.

An example of a bug found by this detector is shown in Fig-
ure 6. This code occurs in the class’s readObject() method,
which deserializes an instance of the object from a stream.
In the example, the number of bytes read is not checked. If
the call returns fewer bytes than requested, the object will
not be deserialized correctly, and the stream will be out of
sync (preventing other objects from being deserialized).

2.3.8 Return Value Should Be Checked (RV)
The standard Java libraries have a number of immutable
classes. For example, once constructed, Java String objects
do not change value. Methods that transform a String value
do so by returning a new object. This is often a source of
confusion for programmers used to other languages (such as
C++) where string objects are mutable, leading to mistakes
where the return value of a method call on an immmutable
object is ignored.

The implementation of the detector for this bug pattern is
very similar to that of the Read Return detector. We look
for calls to any memory of a certain set of methods followed
immediately by POP or POP2 bytecodes. The set of methods
we look for includes

• Any String method returning a String

• StringBuffer.toString()

• Any method of InetAddress, BigInteger, or BigDecimal

• MessageDigest.digest(byte[])

• The constructor for any subclass of Thread

This detector shows how an automatic tool can be an effec-
tive remedy to a common misconception about API seman-
tics.

2.3.9 Uninitialized Read In Constructor (UR)
When a new object is constructed, each field is set to the
default value for its type. In general, it is not useful to read
a field of an object before a value is written to it. Therefore,
we check object constructors to determine whether any field
is read before it is written. Often, a field read before it is
initialized results from the programmer confusing the field
with a similarly-named parameter.

// JBoss 3.2.2RC3

// org.jboss.security.auth.callback

// ByteArrayCallback.java, line 26

public ByteArrayCallback(String propmpt)

{

this.prompt = prompt;

}

Figure 7: Example of uninitialized read in construc-
tor

// JBoss 3.2.2RC3

// org.jboss.deployment.scanner

// AbstractDeploymentScanner.java,

// line 185

// If we are not enabled, then wait

if (!enabled) {

try {

synchronized (lock) {

lock.wait();

...

Figure 8: An example of an unconditional wait

An example of a bug found by this detector is shown in
Figure 7. In this case, the error is simply a misspelling of
the name of the constructor’s parameter.

2.3.10 Unconditional Wait (UW)
Predicting the ordering of events in a multithreaded pro-
gram can be difficult. Therefore, when waiting on a moni-
tor, it is a good (and usually necessary) practice to check the
condition being waited for before entering the wait. With-
out this check, the possibility that the event notification has
already occurred is not excluded, and the thread may wait
forever.

The detector for this bug pattern uses a linear scan over the
analyzed method’s bytecode. It looks for calls to wait()

which are preceeded immediately by a monitorenter in-
struction and are not the target of any branch instruction.

An example of a bug found by this detector is shown in
Figure 8. The enabled field may be modified by multiple
threads. Because the check of enabled is not protected by
synchronization, there is no guarantee that enabled is still
true when the call to wait() is made. This kind of code
can introduce bugs that are very hard to reproduce because
they are timing-dependent.

2.3.11 Wait Not In Loop (Wa)
Java’s Object.wait() method waits on a monitor for an-
other thread to call notify() or notifyAll(). Usually, the
thread calling wait() is waiting for a particular condition to
become true. The most robust way to implement a condi-
tion wait is to put it in a loop, where the waited-for condi-
tion is checked each time the thread wakes up. This coding
style accommodates false notifications arising when a single



Figure 9: Screenshot of FindBugs

monitor is used for multiple conditions. False notifications
can also be caused by the underlying native synchronization
primitives.

While it is possible to correctly use wait() without a loop,
such uses are rare and worth examining, particularly in code
written by developers without substantial training and ex-
perience writing multithreaded code.

3. IMPLEMENTATION
FindBugs is available under an open source license. Down-
loads and documentation are available on the web at
http://findbugs.sourceforge.net.

We have implemented several front ends to FindBugs:

• A simple batch application that generates text reports,
one line per warning.

• A batch application that generates XML reports.

• An interactive tool that can be used for browsing warn-
ings and associated source code, and annotating the
warnings. The interactive tool can read and write the
XML reports. A screenshot of the interactive tool is
shown in Figure 9.

We have also developed several tools for manipulating the
XML reports. These tools allow us to perform actions such
as comparing the difference in warnings generated on two
different versions of an application.

FindBugs users have contributed two additional front-ends:
a plugin that integrates FindBugs into the Eclipse[12] IDE,
and a task for running FindBugs from the Apache Ant[2]
build tool.

4. EVALUATION

It is easy to apply our bug pattern detectors to software.
However, evaluating whether the warnings generated cor-
respond to errors that warrant fixing is a manual, time-
consuming and subjective process. We have made our best
effort to fairly classify many of the warnings generated. Some
of the situations that arise include:

• Some bug pattern detectors are very accurate, but de-
termining whether the situation detected warrants a
fix is a judgment call. For example, we can easily and
accurately tell whether a class contains a static field
that can be modified by untrusted code. However, hu-
man judgment is needed to determine whether that
class will ever run in an environment where it can be
accessed by untrusted code. We did not try to judge
whether the results of such detectors warrant fixing,
but simply report the warnings generated.

• Some the bug detectors admit false positives, and re-
port warnings in cases where the situation warned about
does not, in fact occur. Such warnings are classified as
false positives.

• The warning may reflect a violation of good program-
ming practice but be unlikely to cause problems in
practice. For example, many incorrect synchroniza-
tion warnings correspond to data races that are real
but highly unlikely to cause problems in practice. Such
warnings are classified as harmless bugs.

• Some warnings do not accurately reflect the problem
with the code they identify. However, the code may
be non-standard or dubious in a way that is, at best,
confusing and at worst, wrong in some way other than
that identified by the detector. Such warnings are clas-
sified as dubious.

• And then there are the cases where the warning is
accurate and in our judgment reflects a serious bug
that warrants fixing. Such warnings are classified as
serious.



In this section, we report on our manual evaluation of several
warning categories reported by FindBugs on the following
applications/libraries:

• GNU Classpath, version 0.06

• rt.jar from Sun JDK 1.5.0, build 18

• Eclipse, version 2.1.0

• DrJava, version stable-20030822

• JBoss, version 3.2.2RC3

• jEdit, version 4.1

GNU Classpath [15] is an open source implementation of the
core Java runtime libraries. rt.jar is Sun’s implementation
of the APIs for J2SE [18]. Eclipse [12] and DrJava [10] are
popular open source Java integrated development environ-
ments. JBoss [20] is a popular Java application server. jEdit
[21] is a programmer’s text editor.

All of the applications and libraries we used in our experi-
ments, with the possible exception of GNU Classpath, are
commercial-grade software products with large user com-
munities. Except for rt.jar, we used stable release versions.
(The version of rt.jar we analyzed is from a non-public build.)

None of the analyses implemented in FindBugs is particu-
larly expensive to perform. On a 1.8 GHz Pentium 4 Xeon
system with 1 GB of memory, FindBugs took no more than
13 minutes to run all of the bug pattern detectors on any
of the applications we analyzed. To give a sense of the raw
speed of the analysis, the version of rt.jar we analyzed con-
tains 11,051 classes, is about 30 MB in size, and required 10
minutes to analyze. The maximum amount of memory re-
quired to perform the analyses was approximately 500 MB.
We have not attempted to tune FindBugs for performance
or memory consumption.

4.1 Empirical Evaluation
Figure 10 shows our evaluation of the accuracy of the detec-
tors for which there are clear criteria for deciding whether
or not the reports represent real bugs. All of the detectors
evaluated found at least one bug pattern instance which we
classified as a real bug.

The null pointer dereference detector found the largest num-
ber of genuine bugs. The numbers shown do not include
warnings generated by the detector for redundant null com-
parisons, many of which also indicate real problems in the
code.

It is interesting to note that the accuracy of the detectors
varied significantly by application. For example, the detec-
tor for the RR pattern was very accurate for most applica-
tions, but was largely unsuccessful in finding genuine bugs in
Eclipse. The reason is that most of the warnings in Eclipse
were for uses of a custom input stream class for which the
read() methods were guaranteed to return the number of
bytes requested.

Application Eq HE MS
classpath-0.06 4 19 32
rt.jar 1.5.0 build 18 13 83 162
eclipse-2.1.0 1 58 659
drjava-stable-20030822 0 78 196
jboss-3.2.2RC3 0 21 165
jedit-4.1 0 7 19

Figure 11: Bug counts for other detectors

Our target for bug detectors admitting false positives was
that at least 50% of reported bugs should be genuine. In gen-
eral, we were fairly close to meeting this target. Only the
UW and Wa detectors were significantly less accurate. How-
ever, given the small number of warnings they produced and
the potential difficulty of debugging timing-related thread
bugs, we feel that they performed adequately. We also found
that these detectors were much more successful in finding
errors in code written in undergraduate courses, which illus-
trates the role of tools in steering novices towards correct
use of difficult language features and APIs.

It is worth emphasizing that all of these applications and
libraries (with the possible exception of GNU Classpath)
have been extensively tested, and are used in production
environments. The fact we were able to uncover so many
bugs in these applications makes a very strong argument for
the need for automatic bug checking tools in the develop-
ment process. Static analysis tools do not require test cases,
and do not have the kind of preconceptions about what code
is “supposed” to do that human observers have. For these
reasons, they usefully complement traditional quality assur-
ance practices.

Ultimately, no technique short of a formal correctness proof
will ever find every bug. From our evaluation of FindBugs
on real applications, we conclude that simple static tools like
bug pattern detectors find an important class of bugs that
would otherwise go undetected.

4.2 Other Detectors
In Figure 11 lists results for some of our bug detectors for
which we did not perform manual examinations. These de-
tectors are fairly to extremely accurate at detecting whether
software exhibits a particular feature (such as violating the
hashCode/equals contract, or having static fields that could
be mutated by untrusted code). However, it is sometimes
a difficult and very subjective judgement as to whether fea-
ture is a bug that warrants fixing in each particular instance.
We will simply note that at best, these reports represent in-
stances of poor style.

5. ANECDOTAL EXPERIENCE
In this section, we report on some of our experience in using
this tool in practice. In addition, we report some informa-
tion about the experience of an external organization which
has adopted our tool. These reports are not rigorous, but
simply anecdotal reports of our experience.

5.1 Our Experience



classpath-0.06 rt.jar 1.5.0 build 18
warnings serious harmless dubious false pos warnings serious harmless dubious false pos

DC 0 — — — — 6 83% 0% 0% 16%
IS2 18 72% 16% 0% 11% 52 30% 63% 0% 5%
NP 7 85% 0% 0% 14% 21 95% 0% 0% 4%
OS 9 22% 33% 22% 22% 5 0% 0% 0% 100%
RR 7 100% 0% 0% 0% 10 100% 0% 0% 0%
RV 11 45% 0% 0% 54% 2 100% 0% 0% 0%
UR 3 100% 0% 0% 0% 3 100% 0% 0% 0%
UW 2 0% 0% 0% 100% 6 33% 0% 0% 66%
Wa 2 0% 0% 0% 100% 6 16% 0% 0% 83%

eclipse-2.1.0 drjava-stable-20030822
warnings serious harmless dubious false pos warnings serious harmless dubious false pos

NP 43 93% 0% 6% 0% 0 — — — —
OS 16 6% 6% 18% 68% 5 40% 0% 40% 20%
RR 22 4% 0% 0% 95% 0 — — — —
RV 9 100% 0% 0% 0% 0 — — — —
UR 0 — — — — 1 100% 0% 0% 0%
UW 0 — — — — 3 66% 0% 0% 33%

jboss-3.2.2RC3 jedit-4.1
warnings serious harmless dubious false pos warnings serious harmless dubious false pos

IS2 2 50% 0% 0% 50% 1 0% 100% 0% 0%
NP 10 100% 0% 0% 0% 0 — — — —
OS 2 100% 0% 0% 0% 1 100% 0% 0% 0%
RR 0 — — — — 1 100% 0% 0% 0%
RV 2 0% 0% 0% 100% 0 — — — —
UR 2 50% 0% 0% 50% 2 50% 0% 50% 0%
UW 1 100% 0% 0% 0% 1 100% 0% 0% 0%
Wa 0 — — — — 2 50% 0% 0% 50%

Figure 10: Evaluation of false positive rates for selected bug pattern detectors



Our null pointer exception detector was partially inspired by
a bug in Eclipse 2.1.0 that was fixed in 2.1.1 (bug number
35769). (This bug is shown in Figure 3.) Our detector
accurately identifies this error as well as a number of similar
errors in the current releases of Eclipse.

Early, non-public builds of Sun’s JDK 1.4.2 included a sub-
stantial rewrite of the StringBuffer class. Our tool found a
serious data race in the append(boolean) method, and our
feedback to Sun led them to fix this error in build 12.

In build 32 of Sun’s JDK 1.5, a potential deadlock was intro-
duced into the om.sun.corba.se.impl.orb.ORBImpl class.
In this case, the get next response() calls wait() while
holding a lock that is also needed by the notifyORB() method,
which is responsible for notifying the waiting thread. We
discoved the bug using a detector which looks for calls to
wait() made with more than one lock held. Even though
it is possible to write correct code that calls wait() while
holding a lock, this idiom is error prone and warrants careful
inspection when used. When we reported the issue to Sun,
it was confirmed to be a bug, fixed internally, and the fixed
version is slated to be part of the next JDK 1.5 beta release.

We applied our tool to the Java implementation of the Inter-
national Children’s Digital Library [11], and found a number
of serious synchronization and thread problems. In talking
to the developers, some of the errors we found closely par-
alleled a bug in an earlier version of the software that they
had spent substantial time trying to diagnose and fix in the
previous months. When we applied our tool to an earlier
version of their software, we immediately found the error
they had spent substantial time on.

We have used our tool in a senior level undergraduate course
that covers many advanced Java topics, including threads
and distributed programming. In the current semester, we
are encouraging students to use FindBugs as part of their
development process for their projects. We have also applied
the tool to project submissions from previous semesters.
Our tool found many errors, including problems that one
would never expect to find in production code, such as

• executing the run method of a Thread rather than
starting the thread, and

• performing wait() or notify() on an object while not
holding a lock on that object.

We did not expect that the detectors we wrote particularly
for undergraduate course work would find many problems
in production code. However, we did find a case in Eclipse
where a thread object was created but never run.

One of the nice features of the Java programming language is
that it is impossible to “forget” to release a lock. However,
JCP JSR-166 introduces a new set of more powerful con-
currency abstractions to the Java programming language.
These new concurrency mechanisms include locks which do
not enforce that acquire and release calls are balanced. We
worked with the JSR-166 expert group to develop a detec-
tor that generate a warning if an lock acquisition was not

obviously matched with a release on all program paths (in-
cluding paths arising from exceptions). When run on the
code developed as part of JSR-166, we generated only 9
warnings on 78 uses of acquire that corresponded to places
where non-standard locking was being performed. We didn’t
find any errors, but the care that went into the crafting of
that library made it unlikely that there would be any to find.

5.2 User Experience
Since we made FindBugs available under an open source
license, it has been used by a variety of individuals and or-
ganizations. One of the users is an organization developing
a Geographic Information System application. The applica-
tion comprises over 200 packages, 2,000 classes, and 400,000
lines of code.

The first time FindBugs was applied to this code base, it
reported around 3,000 warnings. The developers on the
project spent about 1 week addressing these issues, eventu-
ally getting the total number of warnings down below 1,000.
This shows that, for this application, a significant number
of the warnings issued by FindBugs were judged by the de-
velopers to be worth fixing. The project leader notes that
they are still fixing some of the remaining warnings. Some
of the specific types of errors reported by FindBugs that
the developers have fixed are hashcode/equals problems, se-
rialization issues, unchecked method return values, unused
fields and constants, mutable static data, and null pointer
dereferences.

Two specific errors caught by FindBugs illustrate how au-
tomatic tools can be useful for finding subtle bugs in code
that appears to be reasonable on the surface. For example,
the developers found the following problem stemming from
an incorrect boolean operator:

if ((tagged == null) && (tagged.length < rev))

The second error resulted from confusion between an in-
stance field and an identically named method parameter:

public void setData(String keyName, String valName,

HashMap hashMap)

{

if (hashMap != null)

this.hashMap = hashMap;

else

this.hashMap = new HashMap(true);

if (hashMap.size() > 0) {

...

}

Both of these examples look like they ought to work, making
it hard to find them by human inspection.

Finally, the lead developer notes that FindBugs has been
helpful in large part because of its ease of application; it can
be run on the entire application in a few minutes.



6. RELATED WORK
There has been substantial work in using bug pattern detec-
tion for finding errors in C and C++ code. Lint, of course,
is the grandfather of all the C error finders [22]. The Metal
system, which works by simulating program executions with
finite state automata, has found thousands of bugs in the
Linux kernel [16, 28]. The ASTLog tool [8], which looks for
syntactically suspicious code patterns, has been extended
into the PREfast tool [23], used extensively within Microsoft
as a bug pattern detector.

There are a fair number of books and web sites that de-
scribe good programming style and bug patterns in Java [1,
27, 5, 19, 9]. However, these are prose descriptions, not au-
tomated tools (and not all bug patterns can be successfully
automated).

Several implementations of Java code checkers exist. One
of the more complete implementations is PMD [25], which
checks for patterns in the abstract syntax trees of parsed
Java source files. PMD implements checks for several of the
bug patterns which we used in this paper, such as hash-
code/equals and double-checked locking. However, many
of the detectors we have implemented, such as inconsistent
synchronization and mutable static fields, are not present in
PMD. Like our tool, PMD uses Visitors to implement its
pattern detectors. One nice feature of PMD is that pat-
terns may be implemented as XPath expressions, so that
new checks can be added without the need to write a new
Visitor class. PMD is based on source code and is more
suited to checking stylistic rules than for checking low-level
code features such as access to fields. In its current form,
PMD analyzes each source file in isolation.

7. CONCLUSIONS AND FUTURE WORK
We believe that bug patterns are a very effective and prac-
tical technique for finding bugs in software. In the future,
we would like to incorporate new bug pattern detectors into
FindBugs. In particular, we would like to find ways to make
bug patterns easy to specify, ideally to the point where de-
velopers could add detectors for new patterns. All of our
conclusions regarding error-prone APIs in the Java libraries
also apply to custom applications, so providing a way for
development organizations to add their own project-specific
bug patterns is an important goal. Towards this end, we
have experimented with using regular expression patterns
to match bytecode sequences, with encouraging results.

We would also like to refine our existing bug detectors to
make them more accurate. One possibility would be to add
user-tunable analysis parameters which could be adjusted
for the characteristics of a particular application. Another
possibility would be to investigate more sophisticated kinds
of analysis, such as taking interprocedural information into
account.

Acknowledgments
Many of the ideas for bug patterns to look for came from
conversations and email discussions with Joshua Bloch and
Doug Lea, in addition to the books and resources cited [1,
27, 5, 19, 9]. We would also like to thank J. Keller for
valuable feedback.

8. REFERENCES
[1] Eric Allen. Bug Patterns In Java. APress, 2002.

[2] Apache Ant, http://ant.apache.org/, 2003.

[3] Thomas Ball and Sriram K. Rajamani. The SLAM
Project: Debugging System Software via Static
Analysis. In Proceedings of the 29th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1–3, Portland, Oregon,
January 2002.

[4] The Byte Code Engineering Library,
http://jakarta.apache.org/bcel/, 2003.

[5] Joshua Bloch. Effective Java Programming Language
Guide. Addison-Wesley, 2002.

[6] William R. Bush, Jonathan D. Pincus, and David J.
Sielaff. A static analyzer for finding dynamic
programming errors. Software—Practice &
Experience, 30:775–802, 2000.

[7] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov,
Robert O’Callahan, Vivek Sarkar, and Manu
Sridharan. Efficient and precise datarace detection for
object-oriented programs. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, July 2002.

[8] Roger F. Crew. ASTLOG: A language for examining
abstract syntax trees. In USENIX Conference on
Domain Specific Languages, pages 229–241, Santa
Barbara, 1997.

[9] Michael C. Daconta, Eric Monk, J. Paul Keller, and
Keith Bohnenberger. Java Pitfalls. John Wiley &
Sons, Inc., 2000.

[10] DrJava, http://www.drjava.org/, 2003.

[11] A. Druin, Ben Bederson, A. Weeks, A. Farber,
J. Grosjean, M.L. Guha, J.P. Hourcade, J. Lee,
S. Liao, K. Reuter, A. Rose, Y. Takayama, L., and
L Zhang. The international children’s digital library:
Description and analysis of first use. Technical Report
HCIL-2003-02, Human-Computer Interaction Lab,
Univ. of Maryland, January 2003.

[12] Eclipse, http://www.eclipse.org/, 2003.

[13] David Evans. Static Detection of Dynamic Memory
Errors. In Proceedings of the 1996 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 44–53, Philadelphia,
Pennsylvania, May 1996.

[14] Cormac Flanagan, K. Rustan M. Leino, Mark
Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended Static Checking for Java. In PLDI’02
[24], pages 234–245.

[15] GNU Classpath,
http://www.gnu.org/software/classpath/, 2003.

[16] Seth Hallem, Benjamin Chelf, Yichen Xie, and
Dawson Engler. A System and Language for Building
System-Specific, Static Analyses. In PLDI’02 [24],
pages 69–82.



[17] Sudheendra Hangal and Monica S. Lam. Tracking
down software bugs using automatic anomaly
detection. In Proceedings of the International
Conference on Software Engineering, pages 291–301,
May 2002.

[18] Java(tm) 2 Platform, Standard Edition,
http://java.sun.com/j2se/, 2003.

[19] Collected java practices.
http://www.javapractices.com.

[20] JBoss, http://www.jboss.org/, 2003.

[21] jEdit, http://www.jedit.org/, 2003.

[22] S.C. Johnson. Lint, a c program checker. In UNIX
Programmer’s Supplementary Documents Volume 1
(PS1), April 1986.

[23] Jonathan D. Pincus. Helping you succeed with PREfix
& PREfast.
http://research.microsoft.com/specncheck/docs/pincus.ppt,
2001.

[24] Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and
Implementation, Berlin, Germany, June 2002.

[25] PMD, http://pmd.sourceforge.net/, 2003.

[26] Nicholas Sterling. WARLOCK — a static data race
analysis tool. In Proceedings of the USENIX Annual
Technical Conference, pages 97–106, Winter 1993.

[27] Bruce Tate. Bitter Java. Manning Publications, 2002.

[28] Yichen Xie and Dawson Engler. Using redundancies to
find errors. In Proceedings of the ACM SIGSOFT
International Symposium on the Foundations of
Software Engineering, November 2002.


