Using Annotations to Check Structural
Properties of Classes

Michael Eichberg, Thorsten Schéfer, and Mira Mezini

Software Technology Group,
Department of Computer Science,
Darmstadt University of Technology, Germany
{eichberg, schaefer, mezini}@informatik.tu-darmstadt.de

Abstract. The specification of meta-information, by using attributes
in .NET or annotations in Java, along with the source code is gaining
widespread use. Meta-information is used for different purposes such as
code generation or configuration of the environment in which a class is
deployed. However, in most cases using an annotation also implies that
constraints, beyond those defined by the language’s semantics, have to
be followed. E.g., a class must define a no-arguments constructor or the
parameters of a method must have specific types. Currently, these con-
straints are not checked at all or only to a very limited extend. Hence, a
violation can remain undetected and result in deployment-time or even
subtle run-time errors. In this paper, we present a user-extensible frame-
work that enables the definition of constraints to check the properties
of annotated elements. Further, we demonstrate the application of the
framework to check the constraints defined in the EJB 3.0 specifica-
tion, and an evaluation of the approach based on checking the xPetstore-
EJB3.0 project from within Eclipse to test the performance.

1 Introduction

The term meta-information refers to information about other information. In
the context of programming languages it denotes information about program el-
ements, which in turn represent information about an application domain. Meta-
information on program elements is generally used by runtime environments and
tools.

In Java, numerous examples of proprietary mechanisms to add meta-informa-
tion to programs exist. Examples are tags like @author or @version used by the
Javadoc tool to generate the class documentation. A similar approach is used
by other tools such as XDoclet[1], Commons Attributes[2], JBoss AOP[3], or
SGen[4]. Another example of extensive use of meta-information in Java are the
various XML files in technologies such as Enterprise JavaBeans (EJBs)[5], Java
Data Objects (JDO)[6], or Java Management Extensions (JMX)[7]. This infor-
mation is used to configure the environment in which a class is to be deployed.

Currently, standard mechanisms are emerging to add meta-information to
source code. In C#, [8] meta-information for source code artifacts like classes,

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 237 2005.
(© Springer-Verlag Berlin Heidelberg 2005

238 M. Eichberg, T. Schéafer, and M. Mezini

methods, fields, etc. can be specified by means of attributes and in J2SE 5.0
by means of annotations [9]. The Java specification specifies six built-in annota-
tions, how to declare annotation types, how to annotate declarations, and how to
read those annotations later on. In addition to built-in annotations, there is also
support to create and use user-defined annotations. Each annotation is consid-
ered a Java modifier and can be applied to annotate package, type, constructor,
method, field, parameter, and local variable declarations. An annotation has a
type and defines zero or more member-value pairs, each of which associates a
value with a different member of the annotation type. E.g., in the following ex-
ample the declaration of the class CategoryX is annotated with the annotation
@Entity, whose member access is set to AccessType.FIELD, i.e., the container
should access the entity’s state using field access:

QEntity(access = AccessType.FIELD) public class CategoryX {...}

J2SE 5.0 annotations will have a fundamental effect on the way we program
in Java. This is indicated by current development efforts on future versions of
standard libraries. Major upcoming Java standards such as EJB 3.0[10], JDO
2.0[11], Java Web Services[12], or JDBC 4.0[13] will heavily rely on annotations.
Further, a specification request exists to develop a set of annotations that apply
across a variety of individual J2SE and J2EE technologies [14]. In the context
of these specifications, annotations will be used for different purposes such as
driving code generation, or supporting configuration. The rationale for the fast
and widespread adoption of annotations is the expectation that their use will
make the development process of components more lightweight and will flatten
the learning curve of the supporting technologies.

However, a fact that is overseen by these efforts is that the use of annotations
often imposes certain implementation restrictions on the decorated program con-
structs. Consider, e.g., the java.lang.0Override annotation of Java 5, which can
be used to annotate non-abstract methods to state that they that must be over-
ridden in any subclass. Since java.lang.0Override is a built-in annotation the
implied implementation restriction is enforced by the Java compiler.

This is, however, not true for user-defined domain-specific annotations. An
example for such annotations are those that will be part of the EJB 3.0 spec-
ification. In EJB 3.0, beans can be written as Java classes annotated with the
specified EJB annotations. Based on these annotations, the container will gener-
ate the corresponding home and remote interfaces and extract the configuration
information it needs. However, the effect of annotating a bean with, e.g., entity
should go beyond driving the generation of its interfaces and providing config-
uration information to the container. It should also mean that implementation
restrictions implied by the annotation, as explicitly stated in the specification,
should be checked for, just like restrictions implied by built-in annotations are
enforced by the compiler. An example of such a restriction on an entity bean is:
”An enterprise bean must not use thread synchronization primitives...”.

Using Annotations to Check Structural Properties of Classes 239

From the discussion so far, it follows that automated annotation-based check-
ing of implementation restrictions is needed. The contribution of the work pre-
sented in this paper is to provide support for this need. We present a user-
extensible tool to bind checks of implementation restrictions to specific annota-
tions. The tool is the first application which builds upon Magellan [15] - a generic
platform for cross-artifact information retrieval during the software development
process. Magellan enables to define queries over a uniform representation of all
artifacts of a software project by mapping the artifacts of a project to XML rep-
resentations and storing them in a database. Then XQuery, a functional query
language for XML documents, can be used to query the database.

We extend this generic platform to check implementation restrictions based
on Java annotations. The extension employs a time-efficient evaluation of checks
by enabling a two-step querying process. In the first step, queries are run that
select those program elements that are of common interest for queries evaluated
in the second step. Certain implementation restrictions apply, e.g., only to entity
beans. A query of the first step will select all entity beans. The result of this
query determines the context for queries of the second step which encode the
logic for checking different implementation restrictions. Hence, information that
is needed by multiple queries is evaluated only once for all queries that need this
information. Since the queries evaluated in the first step define a context for the
evaluation of the subsequent queries they are called context-defining queries.

We also demonstrate the applicability of the proposed approach. As a proof
of concept, we implemented queries to check the implementation restrictions de-
fined by the EJB 3.0 draft!. These checks serve two purposes: (1) they demon-
strate that the query capabilities used in our approach are sufficient for practical
purposes, (2) they were used to evaluate the performance of our tool by run-
ning them against the xPetstore-EJB3.0 project. The results of this evaluation
indicate that the tool can be used to check restrictions for annotated declara-
tions on-the-fly for small to mid-sized projects (< 100-200 project classes), that
is while the checks are performed in the background it is possible to continue
editing in the foreground. Propositions about bigger projects cannot be done
currently since there are no such projects publicly available that already use
Java annotations. We will, however, provide some insights with this regard later
in the paper.

This paper is structured as follows. The following section discusses the data
model and the query language XQuery. Then queries to check implementation
restrictions are discussed in Sec. 3. In Sec. 4 the architecture of the tool is
presented and how queries are evaluated. In Sec. 5 we evaluate the performance
and memory characteristics of our tool to show the feasibility of our approach.
Related work is discussed in Sec. 6. Sec. 7 summarizes the paper and shortly
discusses areas of future work.

L A prototype of the tool, including the checkers, is available as an Eclipse plug-
in and can be downloaded from http://www.st.informatik.tu-darmstadt.de/
pages/projects/Magellan.

240 M. Eichberg, T. Schéafer, and M. Mezini

2 Data Model and Query Language

2.1 Data Model

In this section, we discuss the data model that is the basis for the develop-
ment of checkers. Since one goal of our approach is to provide a user-extensible
tool, the selection of a comparable easy to comprehend data model is crucial.
Due to the widespread knowledge of XML technologies we decided to build it
upon an XML representation. A second reason for choosing XML is the free
availability of industry-strength query languages. However, choosing XML as
the underlying data format is not sufficient on its own. Additionally, we had
to decide what kind of data should be represented. For the representation of
Java code basically two choices exist. Either an XML representation of the ab-
stract syntax tree (AST) of the source code can be used or a byte code based
representation. At a first glance a representation based on the AST might look
advantages because it is closer to what a standard Java programmer is used
to. However, a bytecode representation has two advantageous. First, bytecode
is less variform. E.g., in Java a field can be initialized directly, in an initializer,
or in a constructor, but in bytecode all fields are initialized in a constructor.
Hence, in bytecode the number of different cases how certain functionality can
be expressed is smaller. This makes the development of checkers easier because
it is not necessary to take multiple different possibilities into account. A second
important point against choosing an AST-based representation is that checking
an implementation restriction might require access to pre-built libraries that
are not always available in source code (e.g., to determine inter-class relation-
ships); so, some integration with a byte code representation would be needed
anyway.

Our decision was to use an XML representation of the bytecode which is
generated by BAT:XML [16]. As a result the development of a checker might
require some knowledge about Java bytecode and its XML representation in
particular. Let’s make an example to show how the XML database containing
a representation of a Java class looks like. Assume we have the following class
which declares a variable and a method, and uses annotations:

package xpetstore.domain.catalog. ejb;

@javax.ejb . Entity public class Category implements Serializable {
private Long categoryld;

@javax.ejb.ld public Long getCategoryld() {
return categoryld;

}
}

1
2
3
4
5
6
7
8
9

Listing 1.1. Category.java

Using Annotations to Check Structural Properties of Classes 241

The XML representation of this class, generated by BAT2XML, is shown in list-
ing 1.2 from line 6 to line 28.2 The class itself is represented by the class element
in line 6, while the method (line 16) is represented by a method element, and a
field by a corresponding element (line 14). The attributes of these elements are
self-explaining and define the properties of the declarations. The implementa-
tion of the method is shown in line 22 - 25; the field read access (categoryId)
is represented by the get element (line 23).

1 <db:all>
2 <db:document type="source”
3 documentID="file:/[PATH] /zpetstore/domain/catalog/ejb/Category.class”

4 tag="de.tud.zirc.processor.input. ClassFileInputProcessor” >

5

6 <class

7 name="xpetstore.domain.catalog.ejb.Category” visibility ="public” ...>
8 <annotations> <runtime_visible>

9 <annotation type="javax.ejb.Entity” />

10 </ runtime_visible > </annotations>

11 <inherits> <class name="java.lang.Object” />

12 <interface name="java.io.Serializable” /> < /inherits>

13

14 <field type="java.lang.Long” name="categoryld” visibility="private” .../ >
15

16 <method name="getCategoryld” visibility="public” ...>

17 <annotations> <runtime_visible>

18 <annotation type="javax.ejb.Id” />

19 </ runtime_visible > </annotations>

20 <signature> <returns type="java.lang.Long” /> </signature>

21 <code>

22 <load index="0" />

23 <get declaringClassName="xpetstore.domain.catalog.ejb.Category”
24 fieldName="categoryld” type="java.lang.Long” />

25 <return />

26 < /code>

27 </method>

28 </class>
29 </db:document>
30 </db:all>

Listing 1.2. XML representation of the byte code of the Category class in the database

The db:all element (line 1) is the root element of the database and the
db:document element (line 2 - 4) is used to structure all documents in the

2 The compiler generated default constructor is omitted for brevity.

242 M. Eichberg, T. Schéafer, and M. Mezini

database. Its attributes define necessary information that are required for main-
taining the database (line 3) and to enable further processing of query results
(line 4).

2.2 Query Language

After choosing the data format we decided to use XQuery to implement the
checkers. XQuery [17] is a query language especially well suited for XML data
sources. While XQuery is a functional language comprised of several kinds of
expressions that can be nested and composed with full generality, we will only
elaborate on the features relevant to this paper. The most important among
them is the notion of path expressions®. In a nutshell, a path expression selects
nodes in a (XML-)tree.

For illustration, consider the previous XML document (Listing 1.2). We can
parse this document by accessing the top-level document node (db:all) of
the corresponding tree. Then the path expression db:all/db:document/class/
method/code/get selects the get nodes, resulting in the node spanning line 23
to line 24 in Listing 1.2.

In general, a path expression consists of a series of steps separated by the
slash character. The previous path expression has the steps, namely the child
steps, db:all, db:document, class, method, code and get. The result of each
path expression is a sequence of nodes. XQuery supports different directions in
navigating through a tree, called axes. In the path expression above, we have seen
the child axis. Other axes that are relevant for this paper are the descendant
azis (denoted by “//”), the parent azis (denoted by “..”), the ancestor axis
(denoted by “ancestor::”) and the attribute azis (denoted by “@”). Using the
descendants/ancestor axis rather than the child/parent axis means that one step
may traverse multiple levels of the hierarchy. For example, the above query could
be rewritten as: //get.

The attribute axis selects an attribute of the given node, whereas the par-
ent axis selects the parent of a given node. For example, the path expression
//method/ . ./@name selects the name attribute of the declaring class of a method.
Another important feature of XQuery is its notion of predicates — (boolean)
expressions enclosed in square brackets to filter a sequence of values. For in-
stance, the query //method[@name="getCategoryId"] selects all methods with
the name getCategoryId. One can bind query results to variables, which in
XQuery are marked with the $ character, by means of a let expression, as
illustrated below.

let $entityAnnotations := //annotation[@type="javax.ejb.Entity"]
return $entityAnnotations /ancestor :: class [@final = "true”

XQuery also offers a number of operators to combine sequences of nodes,
namely union, intersect and except, with the usual set-theoretic denotation,

3 This subset of XQuery is a separate standard called XPath [18].

Using Annotations to Check Structural Properties of Classes 243

except that the result is again a sequence in document order, if required. The last
relevant feature of XQuery is its notion of a function definition. For illustration,
the function directSupertypes is shown below, which, being passed a set of
class definitions, returns the classes that are directly inherited.

declare function xirc : directSupertypes ($classes as element()*) as element()* {
db: all /db:document/(class| interface)
[@name =$classes/inherits/(class | interface)/@name]
+

3 Checking Implementation Restrictions

In the following, we exemplary discuss the implementation of some checks on
top of the discussed data model and query language to illustrate the possibilities
offered by our approach, and to give an idea how to define new checks. Basically,
a checker is just a query that selects elements which violate a restriction. Let us
consider a simple check first. The EJB 3.0 draft specification[10] states in section
6.1 [Requirements on the Entity Bean Class] that:

The entity bean class must not be final. No methods of the entity bean
class may be final.

A possible checker is shown in the next listing. The first line selects all classes
that have the javax.ejb.Entity annotation and stores the result in the variable
$ebs. The variable $xirc:project-files is the set of all classes that are not
defined in a library (.jar file). After that, line two determines for all entity
beans ($ebs) the set of classes and methods that are declared final.

1 let $ebs := $xirc: project — files / class [./ annotations //@type =" javax.ejb. Entity "]
2 return $ebs[@final = "true”] union $ebs/method[@final ="true"]

Certain annotations can only be used in combination [19]. E.g., annotating
a method with javax.jws.WebMethod requires that the class is annotated with
javax.jws.WebService[l12]. To check this dependency the following query first
selects all classes that declare a method with the WebMethod annotation (line 1)
and then subtracts (line 2) all classes that are annotated with the WebService
annotation (line 3). The set of classes that have WebMethods but do not declare
to be a WebService is returned.

1 $xirc: project — files / class [.// annotations/ /@type =" javax.jws.WWebMethod"]
2 except
3 $xirc: project — files / class [./ annotations//@type =" javax.jws.WebService"]

The queries discussed so far could also be implemented using Java reflection,
though the corresponding Java implementation would be harder to read and

244 M. Eichberg, T. Schéafer, and M. Mezini

would require more effort: Explicit iteration over all classes and methods and
checking each class’ and method’s modifiers. Fully checking the following restric-
tion is no longer possible using Java Reflection because it requires information
about a method’s implementation, which is not exposed by Java Reflection. The
EJB 2.1 specification (which is referenced by EJB 3.0) states in section 25.1.2
[Programming Restrictions]:

An enterprise bean must not use thread synchronization primitives to
synchronize execution of multiple instances.

The following query checks that (a) no method is synchronized (line 2), that (b)
synchronize is not used (line 3) - using Java’s synchronize statement manifests
in monitorenter and monitorexist instructions at Java bytecode level -, and
that (c) none of the wait or notify methods is called (line 4 - 7).

1 let $c := $xirc: enterprise —beans()
2 return $c/method[@synchronized="true"]
3 union $c/method/code//monitorenter

union $c/method/code/ /invoke[@declaringClassName="java.lang.Object"
and (@methodName="wait" or
©methodName="notify” or @methodName="notifyAll")]

o O

The queries discussed so far are self-containing, i.e. the queries can be executed
as is against the database. However, during the development of the EJB 3.0
checkers we realized that many queries have identical parts. E.g., the queries to
check an entity bean’s implementation restriction nearly always started with a
path expression to determine all classes that are entity beans:

let $ebs := $xirc: project — files / class [./ annotations//@type ="javax.ejb. Entity "]

Even more important, these parts required a significant amount of a query’s
evaluation time: In the case of a simple query up to 80-90%. To improve the
performance of the query evaluation as well as to support a better modular-
ization of the common part of queries we introduce context-defining queries. A
context-defining query is a standard XQuery query where each node in its result
set defines a context node for the subsequent evaluation of other queries. This
node is passed to the query and can be accessed by using the “.” operator. Mul-
tiple queries for checking implementation restrictions together with one context
defining query are defined in a so-called Query Container.

For example, in Listing 1.3 lines 3-9 define a context defining query, which
selects all classes that are enterprise beans. For each enterprise bean returned
by the context-defining query the query defined in lines 14 - 16, which repre-
sents an implementation restriction, is evaluated. At the beginning of line 15
the context node, i.e. a class that is an enterprise bean, is accessed and used to
select a finalize() method, if present. The listing also shows how to associate
additional information (line 11 - 13) with a query.

Using Annotations to Check Structural Properties of Classes 245

1 < implementation_restriction_container >
2 < context_definition_type >query</context_definition_type >
3 < context_definition >
4 /db: all /db:document[@type = "source”]/class|
5 ./ annotations//@type = "javax.ejb. Stateless”
6 or ./annotations//@type = "javax.ejb. Stateful”
7 or ./annotations//@type = "javax.ejb. Entity”
8 or ./annotations//@type = "javax.ejb.MessageDriven”
9 </ context_definition >
10 < implementation_restriction id="FinalizeMethod" >

11 <title>An enterprise bean must not define the finalize () method.</title>
12 <description>(see EJB 3.0 specification)< /description>

13 <severity>error< /severity>

14 <query>

15 ./method[@name="finalize"’ and empty(./signature/parameter)]

16 </query>
17 </ implementation_restriction > ...
18 </ implementation_restriction_container >

Listing 1.3. CommonEJB.XML; Query Container Definition

4 Architecture

As mentioned before, our tool is based upon Magellan [15], an open, cross-
artifact information engineering platform integrated into the Eclipse IDE. Mag-
ellan provides the following services. Documents (in particular Java class files)
are converted into corresponding XML-based representations and stored into a
database. Changes to documents are tracked to keep the internal database up
to date. In addition, a basic query facility is provided. When a client executes
an XQuery query the corresponding XML nodes are returned as the result.

To check implementation restrictions our tool (XIRC) builds upon the Mag-
ellan platform and uses the provided services. For increased usability, XIRC is
also developed as an Eclipse plug-in; however, the concept is also applicable
to any other front-end, e.g., an integration with ANT. A user can enable the
checking functionality on a project basis. If checking is enabled, the tool then
creates special folders for managing the queries. Besides creating new query def-
initions in those folders and dropping existing query definitions in them it is also
possible to include predefined checkers from a third party plug-in. This enables
cost-effective reuse of checkers for common tasks, e.g., the checkers for EJB 3.0
are available as such a plug-in. Checking is triggered any time a resource, i.e.
a Java class file or a checker, changes. Immediately after a change the Magel-
lan plug-in synchronizes the database as discussed. Next, all queries found in the
folder structure or provided by a plug-in are evaluated. The results of each query
are passed to a special handler that is responsible for processing the resulting
XML nodes. In this case, the handler maps the nodes back to the corresponding
locations in the source code (e.g., to a class / method / field declaration or to a

246 M. Eichberg, T. Schifer, and M. Mezini

Java - CategoryX.class

File Edit Source Refackor Mavigate Search Project Run Window Help

i =30 - ¥ - L= B | &raava >

JTopcles... fabCategor.. 52 fbProduct.. | hhOrderc.. | fmPkeclss | 7% =0
AYSLED,UUL, DL LU LI RSO |

i
protected void finzsl {1 throws Thro le {

out.println thing™)

} finally
super.finalize(];

v b
< ‘ b
Javadoc | Declaration | XIRC Resource Database | VS Repositories | Error Log | Progress =8
2 errors, 51 warnings, 0 infos (Filker matched 53 of 112 items) 4 }:9 —
| Description | Resource | In Folder
@ no synchronized blocks [xpetstore. domain, catalog. ejb. Categoryi] Category®.class xpetstar
@ Threads should not be started [xpststore,domain, catalog. ejb. Cateqary®] Categoryy,class wpetstor
¢ Declare accessor methods for the persistent property [xpetstore.domai... Category.class xpetstar
& Declare accessor methods For the persistent property [xpetstore.domai.., Category¥.class =petstar
{8 Declare accessor methods For the persistent property [xpetstore.domai... CategoryX.class xpetstar
& Do not declare methads with name starting with "gjb" [xpetstore.domain... Category¥.class xpetstar
&l Do not define the finalize() method [xpetstore. domain. catalog.ejb. Cake... | Cat 55) g
& Enkerprise beans must be public and must nok be final or abstract [xpets... Category¥.class wpetstar
< | >

&] Tg 5= | Danot define the fin. . .talog.ejh. CategoryX]

Fig. 1. Violations of constraints implied by annotations in Eclipse

line number in the source code). Additional information defined along with the
query, such as the severity of the restriction or a problem description, are used
to inform the developer about the broken restriction (see Figure 1).

Figure 1 shows an example of the results from multiple queries. In the lower
half of it the standard problem view of Eclipse is shown with multiple violated
restrictions for class CategoryX. The developer can see the severity, a description
and the location where the violation occurs. ;From the second last entry in the
problems view it can be seen that it is possible to navigate to the corresponding
location in the source code by selecting an entry.

5 Evaluation

Before we will discuss the performance, we first discuss the effort necessary when
developing new checkers. We made the experience that the biggest effort when
writing queries is to learn to use XQuery. The effort was not to understand
the XML representation generated by BAToXML. This is probably due to the
fact that most checkers do not require sophisticated control-flow or data-flow
analysis and that it is sufficient to simply take a look at the XML representation
of a class to write the query. A detailed knowledge of the execution semantics of
bytecode instructions is not necessary. Hence, we expect that developers familiar
with XQuery and Java can immediately start writing queries to check structural

Using Annotations to Check Structural Properties of Classes 247
Table 1. Evaluation times of queries

[SHORT DESCRIPTION | SEcoNDs]
CommonEJB.xml > 0.643225
context defining query 0.023961
an EJB must not start threads 0.017519
signature of call back method is invalid 0.069257
the chosen transaction attribute cannot be used 0.011743
an EJB must have a no-arg constructor 0.010397
a business method must not start with “ejb” 0.012741
an instance that starts a transaction must complete the transaction 0.385770
before it starts a new transaction
(get|set)RollbackOnly should be called only in bean methods that 0.044467
execute in the context of a transaction
UserTransaction is unavailable to EJBs with CMT demarcation 0.011552
a TransactionAttribute can only be specified with CMT demarcation 0.012814
EJBs should not handle concurrent access on their own 0.013553
SessionEJB.xml > 0.831755
context defining query 0.204696
for update / delete operations a transaction context is required 0.047968
argument and return types must be legal types for RMI/IIOP 0.476183
argument and return types must be legal types for JAX-RPC 0.027315
multiple business interfaces should be annotated as Local or Remote 0.046658
this SessionContext’s method cannot be called 0.024672
EntityEJB.xml Z 1.928637
context defining query 0.147486
persistent field has invalid type 0.463888
persistent properties with @Basic may not be an entity association 0.016634
invalid dependent class 0.159400
a protected field is to accessed by the defining class only 0.032637
an entity bean that is a subclass of another entity bean must have the 0.155760
same primary key
entity beans must have getter/setter-methods for persistent fieds 0.099020
collection-valued persistent properties must have type 0.737543
java.util.Collection or java.util.Set.
invalid type for primary key 0.080830
MessageDrivenEJB.xml > 0.015559
context defining query 0.011637

properties and that those checks can be written in a reasonable amount of time,
that is implementing and testing a query requires less than an hour.

To assess the potential, performance, and memory consumption of our ap-
proach we have developed a full set of queries to check the constraints defined
in the EJB 3.0 draft specification[10]. The queries were evaluated against a demo

248 M. Eichberg, T. Schéafer, and M. Mezini

release of the xPetstore project[20]* project that was updated by Bill Burke and
Gavin King for EJB 3.0.

The following measurements were taken on an Intel Celeron 2.40 GHz system
with 504 MB RAM running Windows XP and using J2SE 5.0, Saxon 8.1 and
Eclipse 3.1M2 as the underlying platform. The XML database had 2833 class
entries, which represented all public classes and interfaces of all Java APIs®
delivered with Java 5, except for classes in the javax.swing.* and java.awt.*
packages. Additionally, all necessary JARs to compile the xPetstore project were
included. The evaluation for the original xPetstore project which run without
any error being signaled required 1.97 seconds. To make the evaluation more
realistic, we injected some more or less severe problems into the project code. The
evaluation of all 48 queries against the messed project code generated correctly
53 messages and was executed in 3.56 seconds. In both cases, the time required
by Eclipse to recompile the source file and to update the Magellan database
should be added, which amounts to another 1-2 seconds. To keep the Magellan
database in memory approximately 40 MB are required.

Detailed execution times are shown in Table 1; the table lists the times re-
quired to evaluate the query containers (printed bold) as a whole, as well as
the times required for the evaluation of each context defining query, and the
times for the queries to check the constraints along with a short description of
the checked constraint. Queries that took less than 10 milliseconds to evaluate
are omitted for brevity. The descriptions were shortened; the messages shown to
developers are more detailed.

The result of this preliminary analysis shows that the overhead (less than
five seconds and running in a non-blocking background process), generated by
checking all implementation restrictions, is acceptable for a day-to-day usage.
Further, the evaluation shows that the implementation restrictions defined by
EJB 3.0 can be checked by using a declarative, though functionally complete,
query language; it is not necessary to write the checks as imperative meta-
programs in a “standard programming language” such as Java.

6 Related Work

The purpose of FindBugs[21] is to find bugs or potential bugs in existing projects
based on control and data flow analysis. In contrast to our tool, FindBugs does not
enable to write declarative queries. Instead, to detect a bug a visitor[22] has to be
written that visits the in-memory representation of a class’ bytecode and reports er-
rors and warnings. JLint[23] and JiveLint[24] are further tools to detect bugs, which
are similar in scope and functionality to FindBugs. However, while these tools are
concerned with identifying general bugs that are independent of the usage of spe-
cific frameworks our approach is targeted at identifying specific implementation
restrictions that need to be checked if and only if a specific framework is used.

4 xPetstore-EJB3.0: http://cvs.sourceforge.net/viewcvs.py/jboss/xpetstore-ejb3.0/
5 Classes starting with com.* are irrelevant for the checks and were not included.

Using Annotations to Check Structural Properties of Classes 249

IRC [25] is similar to FindBugs in the respect that a checker also analyses
the in memory representation of a class’ bytecode. But in contrast to FindBugs
a sophisticated framework exists to programmatically construct queries to check
the code. So, while evaluation speed is explicitly targeted by IRC writing a query
still involves writing Java code and requires detailed knowledge of the internal
representation of the byte code. Based on a comparison of the development
of checkers using IRC and our new tool XIRC our experience is that writing,
maintaining and evolving declarative queries on top of an XML representation is
easier and can be done in less time. The development of checkers (for EJB 2.1)
for IRC needed approximately double the time than the development for XIRC;
though, the preconditions were comparable: The students who developed the
checkers had no knowledge about the framework or the byte code representation
in case of IRC and no knowledge about XQuery or the XML representation of
byte code in case of this work.

AspectJ[26] can also be used for constraint checking[27]. However, AspectJ
was not primarily designed to do it and, as we have argued in [25], the possibilities
offered by static pointcuts to detect violations of constraints are too limited to
be useful in general.

PMD|[28] is similar to our tool in the respect that it also supports to write
declarative queries by using XPath, which is an important part of the XQuery
language. However, PMD operates on the abstract syntax tree of a program and
its primary goal is to check the style of a program and not the semantics. In
particular, the used abstract syntax tree does not contain resolved type infor-
mation, e.g., the types of the formal parameters of a method are not available
from looking at a method call node in the AST. This makes writing queries that
take type information into relation or that need to span multiple classes tedious
and error-prone. Checkstyle[29] is similar to PMD and suffers from the same
problem.

The idea of Splint[30] is to annotate the source code (ANSI C) to make design
decisions or implementation restrictions explicit. E.g., to annotate a parameter
with @notnull to indicate that the parameter should never be null. Splint will
then perform a static analysis of the code using the annotations and report vi-
olations. Splint is designed as a compiler; extensibility by users was not a goal.
However, it would be an interesting exercise to develop a set of similar Java
annotations and checks that can be used by developers to make implementation
restrictions explicit in their code and which are checked.

ESC/Java2[31] also uses annotations of the Java source code to enable an ex-
tended static analysis. Since ESC/Java is based on theorem proving the evalua-
tion times are very high [32]; on-the-fly evaluation is out of scope.

7 Summary and Future Work

With the standardization of annotations in J2SE 5.0, a common metadata facility
is now available for the programming language Java. Forthcoming standards in
the Java landscape such as EJB 3.0, JDBC 4.0 and Web Services Metadata

250 M. Eichberg, T. Schéafer, and M. Mezini

show the widespread adoption of annotations. As argued previously, the usage
of meta information in program code often implies that specific implementation
restrictions have to be obeyed by the annotated declarations to guarantee that
the program will work properly. Though, implementation restrictions are not
new we argue that annotations represent perfect join points in the source code
where to start checking restrictions.

We have shown that our tool can check structural properties of classes by us-
ing annotations, and that the checks themselves can be defined using declarative
queries. For evaluation we applied our framework to the EJB 3.0 specification
and, as our evaluation suggests, the performance is already good enough to use
it for small to mid size projects. The tool is user-extensible and fully integrated
into the Eclipse IDE enabling checks during the development process.

To the best of the authors knowledge, we presented a first fully-integrated
tool which is capable of on-the-fly checking of properties based on Java’s new
annotation facility.

Currently, all queries are always evaluated against the entire database, which
is reasonable fast for small to mid sized projects. But for large projects with
hundreds of classes the achieved performance may be too slow; even though
the evaluation is executed in the background, evaluation times beyond 10 to 15
seconds are not acceptable. The problem is that a long-running build process may
prevent other (background-)processes from execution and may finally require
the developer to stop the work until the processes have completed. To achieve
faster evaluation times we are going to investigate queries that are evaluated
per changed document, i.e., a changed document is set as the context node
for the query evaluation. However, in this case it is necessary to keep track of
all documents visited by a query in order to know when to reevaluate it. The
question is, if the necessary effort for tracking and managing these information
finally pays off.

Acknowledgments

The authors would like to thank Cuma Ali Gencdal, who implemented parts of
the support for annotations in BATo XML and most of the queries for EJB 3.0.

References

1. Team, X.: XDoclet: Attribute-Oriented Programming. (http://xdoclet.sourceforge.

net/)

2. Foundation, A.S.: Commons attributes. jakarta.apache.org/commons/attributes/
(2004)

3. Inc., J.: JBoss AOP 1.0 beta3. http://www.jboss.org (2004)

4. Beust, C.: SGen. http://www.beust.com/sgen/ (2004)

5. DeMichiel, L.G.: Enterprise JavaBeans Specification, Version 2.1. SUN Microsys-
tems (2003)

6. Russell, C.: Java Data Objects, Version 1.0. SUN Microsystems (2002)

10.

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

Using Annotations to Check Structural Properties of Classes 251

Sun Microsystems: Java management extensions. White paper, Palo Alto, Cali-
fornia, USA (1999)

Archer, T.: Inside C#. Microsoft Press (2001)

Bloch, J.: A metadata facility for the java programming language. Java Specifica-
tion Request 175, SUN Microsystems (2002)

DeMichiel, L.G.: Enterprise javabeans specification, version 3.0. Java Specification
Request 220 (2003)

Russell, C.: Java data objects 2.0 - an extension to the jdo specification. Java
Specification Request 243 (2004)

Zotter, B.: Web services metadata for the java platform. Java Specification Request
181 (2004)

Bruce, J.: Jdbc 4.0 api specification. Java Specification Request 221 (2004)
Mordani, R.: Common annotations for the java platform. Java Specification Re-
quest 250 (2004)

Eichberg, M., Mezini, M., Ostermann, K., Schéfer, T.: A kernel for cross-artifact
information engineering in software development environments. In: Proceedings of
11th IEEE Working Conference on Reverse Engineering (WCRE), IEEE Computer
Society (2004) to appear.

Eichberg, M.: Battoxml. http://www.st.informatik.tu-darmstadt.de/BAT (2004)
Boag, S., Chamberlin, D., Fernandez, M.F., Florescu, D., Robie, J., Siméon, J.:
Xquery 1.0: an xml query language. Working Draft 23 Juli 2004, (W3C)

Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0.
(http://www.w3.org/TR/1999/REC-xpath-19991116)

Cepa, V., Mezini, M.: Declaring and enforcing dependencies between .net custom
attributes. In: Proceedings of the Third International Conference on Generative
Programming and Component Engineering. (2004)

Tchepannou, H., McSweeney, B., Cooley, J.: xPetstore. http://xpetstore.sourceforge.
net (2003)

Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Notices December
(2004)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Professional
Computing Series. Addison-Wesley (1995)

Artho, C.: Finding faults in multi-threaded programs. http://artho.com/jlint/
(2001)

Sureshot: JiveLint v1.22. (http://www.sureshotsoftware.com/javalint/)
Eichberg, M., Mezini, M., Schéafer, T., Beringer, C., Hamel, K.M.: Enforcing
system-wide properties. In: Proceedings of the 15th australian software engineering
conference (ASWEC), IEEE Computer Society (2004)

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: Proceedings of the 15th european conference on object-
oriented programming (ECOOP). Volume 2072 of Lecture Notes in Computer Sci-
ence., Budapest,Hungary, Springer (2001) 327-355

Shomrat, M., Yehudai, A.: Obvious or not? regulating architectural decisions us-
ing aspect-oriented programming. In Kiczales, G., ed.: Proceedings of 1st inter-
national conference on aspect-oriented software development (AOSD), Enschede,
The Netherlands”, ACM Press (2002) 3-9

PMD. (http://pmd.sourceforge.net)

Kiihne, L., Studman, M., Burn, O., Sukhodolsky, O., Giles, R.: Checkstyle.
http://checkstyle.sourceforge.net/ (2004)

252

30.

31.
32.

M. Eichberg, T. Schéafer, and M. Mezini

Evans, D., Larochelle, D.: Improving security using extensible lightweight static
analysis. IEEE Software January / February (2002)

Cok, D., Kiniry, J.: Esc/java2. http://www.cs.kun.nl/sos/research/escjava/ (2004)
Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for
java. In: 15th IEEE International Symposium on Software Reliability Engineering
(ISSRE’04). (2004) to appear.

	Introduction
	Data Model and Query Language
	Data Model
	Query Language

	Checking Implementation Restrictions
	Architecture
	Evaluation
	Related Work
	Summary and Future Work
	Acknowledgments
	References

