
SVPP — 2008-08-09


Model-Centric Software Adaptation


Oscar Nierstrasz


Software Composition Group

scg.unibe.ch




2


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




3


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




4


Team — scg.unibe.ch


Magritte
 Lukas Renggli


Reflectivity
 Marcus Denker


Hermion
 David Röthlisberger


Object Flow
 Adrian Lienhard


Changeboxes
 Pascal Zumkehr


Embedding DSLs
 Lukas Renggli


Other topics …
 Tudor Gîrba,  
Adrian Kuhn, Toon Verwaest




5


Software inevitably changes, but …


most programming 
languages and IDEs 

inhibit change rather 
than support it!




6


(Some) dimensions of change


scope


granularity


timescale


>  (Re-)configuration

>  Bug fixes

>  Refactoring

>  New functionality

>  Bridging versions

>  Dynamic aspects

>  Instrumentation

>  Run-time adaptation

>  …




7


Not model-driven, but model-centric


meta-model


model


"the real world"


meta-meta

model


M0


M1


M2


M3




8


Not static, but context-aware




9


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




10


Magritte




[Yoder et al, 2001] Architecture and design of adaptive object models






13


Magritte — meta-descriptions enable dynamic 
change




14


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




15


How to change a running system?


Arbitrary granularity


Unanticipated




16


Geppetto — dynamic adaptation through partial 
behavioural reflection


Partial behavioural reflection


“Evil twin”




17


Reflectivity and Geppetto




18


Context


Reflection can be scoped
 to the base level

(or to the meta-level …)




19


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




20


Hermion — combining static and dynamic 
information in the IDE




21


Enriching source artifacts with dynamic 
information




22


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




23


How to track down defects when the offending 
context is gone?




24


Object Flow Analysis


Use first-class aliases to track object flow




25


A back-in-time VM with object flow analysis




26


Selective memory


Remember only what is needed!

>  record aliases and past states as regular objects 

>  GC forgets them when no longer needed 




27


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




28


Changeboxes — encapsulate and manage 
change in a running system






30


Changeboxes in a nutshell




31


Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)




32


Embedding Domain Models in Code


13.32


Make DSLs first
 class citizens of

 their host language






Conclusions




35


Systems that support change need to be 
model-centric and context-aware


Scope changes to: 

• base/meta levels

•  individual clients

• …


First-class meta-descriptions

High-level, fine-grained reflection

Run-time annotations




36


Where do we go from here?


From model-centric to virtual worlds?



