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Roadmap


>  Intro — Model-centric development

>  Self-describing systems (Magritte)

>  Fine-grained, unanticipated adaptation (Reflectivity)

>  Bridging static and dynamic views (Hermion)

>  Tracking change (Object flow)

>  Scoping change (Changeboxes)

>  Bringing models to code (Embedding DSLs)
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Team — scg.unibe.ch


Magritte
 Lukas Renggli


Reflectivity
 Marcus Denker


Hermion
 David Röthlisberger


Object Flow
 Adrian Lienhard


Changeboxes
 Pascal Zumkehr


Embedding DSLs
 Lukas Renggli


Other topics …
 Tudor Gîrba,  
Adrian Kuhn, Toon Verwaest
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Software inevitably changes, but …


most programming 
languages and IDEs 

inhibit change rather 
than support it!
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(Some) dimensions of change


scope


granularity


timescale


>  (Re-)configuration

>  Bug fixes

>  Refactoring

>  New functionality

>  Bridging versions

>  Dynamic aspects

>  Instrumentation

>  Run-time adaptation

>  …
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Not model-driven, but model-centric


meta-model


model


"the real world"


meta-meta

model


M0


M1


M2


M3
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Not static, but context-aware
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Magritte




[Yoder et al, 2001] Architecture and design of adaptive object models
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Magritte — meta-descriptions enable dynamic 
change
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How to change a running system?


Arbitrary granularity


Unanticipated
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Geppetto — dynamic adaptation through partial 
behavioural reflection


Partial behavioural reflection


“Evil twin”
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Reflectivity and Geppetto
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Context


Reflection can be scoped
 to the base level

(or to the meta-level …)
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Hermion — combining static and dynamic 
information in the IDE
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Enriching source artifacts with dynamic 
information
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How to track down defects when the offending 
context is gone?
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Object Flow Analysis


Use first-class aliases to track object flow
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A back-in-time VM with object flow analysis




26


Selective memory


Remember only what is needed!

>  record aliases and past states as regular objects 

>  GC forgets them when no longer needed 
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Changeboxes — encapsulate and manage 
change in a running system
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Changeboxes in a nutshell
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Embedding Domain Models in Code


13.32


Make DSLs first
 class citizens of

 their host language






Conclusions
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Systems that support change need to be 
model-centric and context-aware


Scope changes to: 

• base/meta levels

•  individual clients

• …


First-class meta-descriptions

High-level, fine-grained reflection

Run-time annotations
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Where do we go from here?


From model-centric to virtual worlds?



