
1

University of Namur (FUNDP)
Computer Science Faculty

Cross-checking Disambiguated
Product Line Variability Models

P. Heymans, A. Metzger, P-Y. Schobbens,
K. Pohl, G. Saval, A. Hubaux

University University of Namurof Namur

www.software-engineering.be

svpp 08, VUB 8-9/8/2008

University University of of Duisburg-EssenDuisburg-Essen

2

University of Namur (FUNDP)
Computer Science Faculty

Presentation outline

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

3

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

4

University of Namur (FUNDP)
Computer Science Faculty

Software Product Line Engineering (SPLE)

www.sei.cmu.edu/productlines

D o m a i n E n g i n e e r i n g

DomainDomain
AnalysisAnalysis

DomainDomain
DesignDesign

DomainDomain
ImplementationImplementation

ApplicationApplication
RequirementsRequirements

ApplicationApplication
DesignDesign

ApplicationApplication
CodingCoding

ReferenceReference
RequirementsRequirements

ReusableReusable
ComponentsComponents

ReferenceReference
ArchitectureArchitecture

A p p l i c a t i o n E n g i n e e r i n g

Domain
Expertise

Specific
Req’ts

CoreCore
AssetsAssets

Feedback/
Adaptation

Final
Products

5

University of Namur (FUNDP)
Computer Science Faculty

Key SPLE benefits & challenges

 Benefits

• Scale economies

• Shorter time to maket

• Less risky development

 Challenges

• High upfront adoption costs

• Requirements are even more crucial

– they determine the success of the whole family

• Manage the variation between products

6

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

7

University of Namur (FUNDP)
Computer Science Faculty

Two kinds of variability

• descriptive statements about the existing software assets
• relevant to both SPLE and single product development
• example:

Software Variability refers to the ability of a software system or
artefact to be efficiently extended, changed, customized or
configured for use in a particular context. [Svahnberg et al. 2005]

«component»

VoiceCommunication

«component»

C1:GSM
«component»

C2:UMTS

«component»

:Protocol

1..3

«component»

C3:VoIP

8

University of Namur (FUNDP)
Computer Science Faculty

Two kinds of variability

• prescriptive statements about the products to be built

• explicit decisions made by product management

• specific to SPLE

• example :

– ‘‘ Every mobile phone in the PL shall support the GSM protocol, the

UMTS protocol, or both (but not VoIP or other protocols) ’’

Product Line Variability describes the variation (differences)
between the systems that belong to a product line in terms of
properties and qualities (like features that are provided or
requirements that are fulfilled).

[Coplien et al., 1998] [Kang et al., 2002] [Pohl et al., 2005]

9

University of Namur (FUNDP)
Computer Science Faculty

Relationship between the two variabilities

is realized through

Software Variability refers to the ability of a software system or
artefact to be efficiently extended, changed, customized or
configured for use in a particular context. [Svahnberg et al. 2005]

Product Line Variability describes the variation (differences)
between the systems that belong to a product line in terms of
properties and qualities (like features that are provided or
requirements that are fulfilled).

[Coplien et al., 1998] [Kang et al., 2002] [Pohl et al., 2005]

10

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

11

University of Namur (FUNDP)
Computer Science Faculty

 Support PL business and software engineers in

• Making PL variability decisions that are aware of

– the software asset’s capabilities

– the software adaptation costs

• Developing software assets that allow

– to realize all PL variability

– but not too much more

 Current practice

• information is not documented

• or documented informally

• or software & PL variability are not distinguished
[Metzger & Heymans, TR, 2006]

Our objective

12

University of Namur (FUNDP)
Computer Science Faculty

Use formal variability models

f2
Payment Upon

Invoice

Download centre

f4
Check Credit

History

f3
Credit Card
Payment

requires

f1
Debit Card
Payment

«D¬ = { { f3 }, { f1,f3 }, { f3,f4 }, { f2,f3,f4 }, { f1,f3,f4 }, { f1,f2,f3,f4 } }

Formal, but still ambiguous:
– are these the realizable software products?
– are these the PL members to be offered to customers?
– or an entangled mixture of each?

D

[RE’06]

Optional feature

AND-decomposition Mandatory feature

13

University of Namur (FUNDP)
Computer Science Faculty

The proposed approach

 The 2 variabilities are

• Documented separately

• Related through X-links

 Using popular concrete syntaxes

in the front-end

• OVM [Pohl et al., 2005]

• any FD dialect

 Using formal semantics

in the back-end

• less ambiguity

• automated reasoning support

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

f5
PayPal

Payment

 Variants

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

Variation
Point

1..3

Check
Credit History

V4

X-link

requires

PL Variability (OVM)

Software Variability (FD)

Variab ility
Constraint

xor

14

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

15

University of Namur (FUNDP)
Computer Science Faculty

Internal model verification

Basic semantic checks [Benavides et al. 2006] [RE’06], e.g.

 Satisfiability: «D¬VFD ≠? ∅

 Product (resp. PL member) enumeration: list all pi s.t. pi ∈ «D¬VFD

 Product (resp. PL member) checking: pi={fi,1,...,fi,n} ∈? «D¬VFD

 Dead features (resp. variants): {f1,...,fm} \ ∩ «D¬VFD

 Commonality: ∪ «D¬VFD

FD VFD Prop logic

OVM VFD Prop logic

[RE’06]

[RE’07]

[RE’07]
(generalizes [Batory, SPLC’05])

Front-end Back-end

16

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

17

University of Namur (FUNDP)
Computer Science Faculty

X-links and their semantics

 “Whenever a variant is chosen,
all its X-linked features must be in’’
e.g.

{V1,V3,f3,V4,f4} ∉ «G¬
{V1,f1,V3,f3,V4,f4} ∈ «G¬

 “An X-linked feature requires at least one
X-linked variant (justification) to be chosen’’
e.g.

{f1,V3,f3,V4,f4} ∉ «G¬
{V1,f1,V3,f3,V4,f4} ∈ «G¬
{V1,f1,V3,f3,V4,f4,f5} ∈ «G¬

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

G =

F

O

18

University of Namur (FUNDP)
Computer Science Faculty

Global model’s semantics

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

G =

F

O

«G¬ is the set of

realizable PL members

(incl. their features)

19

University of Namur (FUNDP)
Computer Science Faculty

Simple syntactic X-checks (warnings)

 Suspect cases

• Features not hit by an X-link

• Variants with no departing X-link

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

20

University of Namur (FUNDP)
Computer Science Faculty

Simple syntactic X-checks (warnings)

 Suspect cases

• Features not hit by an X-link

• Variants with no departing X-link

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

??

21

University of Namur (FUNDP)
Computer Science Faculty

Simple syntactic X-checks (warnings)

 Suspect cases

• Features not hit by an X-link

• Variants with no departing X-link

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

22

University of Namur (FUNDP)
Computer Science Faculty

Simple syntactic X-checks (warnings)

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

PayPal
Payment

V5
Payment
method

VP1

 Suspect cases

• Features not hit by an X-link

• Variants with no departing X-link

23

University of Namur (FUNDP)
Computer Science Faculty

Simple syntactic X-checks (warnings)

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

Global
inclusion

X-link Suspect cases

• Features not hit by an X-link

• Variants with no departing X-link3

24

University of Namur (FUNDP)
Computer Science Faculty

Simple syntactic X-checks (warnings)

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

Global
exclusion

X-link Suspect cases

• Features not hit by an X-link

• Variants with no departing X-link

25

University of Namur (FUNDP)
Computer Science Faculty

Towards semantic X-checks

FD VFD

OVM VFD

VFD

X-links

Prop logic
φO+F

Prop logic
φX

Prop logic
φO+F ∧ φX

...and apply basic semantic
checks (satisfiability, product checking...)

for a start

G =

Front-end Back-end

26

University of Namur (FUNDP)
Computer Science Faculty

X-links → prop logic

f

V1 V2 Vn...

→ f , v1 _ v2 _ … _ vn

f

→ f

Pattern 1 — one-to-one inclusion X-link Pattern 2 — global inclusion X-link

Pattern 3 — global exclusion X-link

→ ¬f

No specific pattern

Use any formula in

B ({f1,...,fm} [{V1,...,Vn})

V1 V2 Vn...

V1 V2 Vn...

f

27

University of Namur (FUNDP)
Computer Science Faculty

Advanced semantic checks

 Check1. Realizability — are there non-realizable PL members?
• PL member po 2 «O¬ is realizable if po 2 «G¬|O
• non-realizable PL members are given by «O¬\«G¬|O

 Check1’. Usefulness — are there useless products?
• product pf 2 «F¬ useful if pf 2 «G¬|F
• useless products are given by «F¬\«G¬|F

sy
m

m
et

ric
sy

m
m

et
ric

28

University of Namur (FUNDP)
Computer Science Faculty

Realizability — example

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

G =
 Detected issue

• {V1,V2,V3,V4} ∈ «O¬

• {V1,V2,V3,V4} ∉ «G¬|O

• Hence, {V1,V2,V3,V4} ∈ «O¬\«G¬|O

 Solution

• either restrict the PL scope

• or increase the flexibility of the

software platform

29

University of Namur (FUNDP)
Computer Science Faculty

Usefulness — example

f4
Check

Credit History

f2
Payment Upon

Invoice

Download centre

f3
Credit Card
Payment

f1
Debit Card
Payment

PL Variability (OVM)

Software Variability (FD)

f5
PayPal

Payment

Payment
method

VP1

Debit Card
Payment

V1
Payment Upon

Invoice

V2
Credit Card
Payment

V3

1..3

Check
Credit History

V4

requires

F

O

G =
 Detected issue

• {f2} ∈ «F¬

• {f2} ∉ «G¬|F

• Hence, {f2} ∈ «F¬\«G¬|F

 Possible optimization

• either expand the PL scope

(for free)

• or remove the flexibility of the

software platform

30

University of Namur (FUNDP)
Computer Science Faculty

More advanced semantic checks

 Check2. Internal competition — 2 distinct PL members realized by 1
product?

• (po1 [pf) 2 «G¬ Æ (po2 [pf) 2 «G¬ Æ (po1 ≠ po2)

• i.e. several ways for the customer to get the same features,
maybe at different prices...

 Check2’. Unloyalty to customer — 2 distinct products realizing the
same PL member?

• (po [pf1) 2 «G¬ Æ (po [pf2) 2 «G¬ Æ (pf1 ≠ pf2)

• i.e. two customers could choose the same PL member,
and get different features

sy
m

m
et

ric
sy

m
m

et
ric

31

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

32

University of Namur (FUNDP)
Computer Science Faculty

Summary of contributions

 Disambiguation of variability models

• Separation of concerns — software vs. PL variability

• Formal models — FD (not new), OVM, X-links

 Automated verification

• internal model consistency

– not new, but now (more) meaningful !

• cross-model consistency

 Proof-of-concept prototype using

 Application to non-toy (but not real-size) exemplar

• Private Branch eXchange [Lee, Kang et al., 2006]

33

University of Namur (FUNDP)
Computer Science Faculty

1. Software Product Lines Engineering

2. Two kinds of variability

3. Objectives and approach overview

4. Internal model verification

5. Cross-model verification

6. Summary of contributions

7. Current & future work

34

University of Namur (FUNDP)
Computer Science Faculty

Current & future work

 Apply approach to real-size project

• transitioning OSS into a SPL

 Validate and improve notations

• modularize variability models [Classen et al., VaMoS’07]

• more X-link patterns needed?

• further formalization and separation of concerns

[Delannay et al., OSSPL’07] [Hubaux et al., SPLC’08]

35

University of Namur (FUNDP)
Computer Science Faculty

Current & future work

 Validate and improve tools
• optimize verifications

– less naive use of SAT solver

• identify more checks

• towards an integrated tool chain for SPLE

