
TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH TEXTBOOK LANGUAGES 1

Towards a Product Line of Interpreters:
An Experiment with Textbook Languages

Thomas Cleenwerck, Rodolfo Toledo

Index Terms—D.3.4.e Programming Languages, Processors, Interpreters

F

1 INTRODUCTION

A S software is subjected to a continuing rate of
evolution, the programming languages that were

used to construct it evolve as well. This is not only
apparent from a historical perspective, where we see
that all mainstream languages continue to evolve. It
is even more so apparent in our continuous effort to
construct languages which are designed with a particular
application domain in mind. Examples of this range from
computational domains like object-orientation, aspects,
over hardware domains like distribution or parallelism,
to end-user application domains like business process
engineering.

In this paper we focus on the evolution of the se-
mantics of a programming language. Ideally, languages
should be extensible using modular extensions. This
implies that the impact of change to an existing language
as well as the changes to the already applied extensions
should be minimal.

A wealth of techniques has been proposed and investi-
gated to facilitate language implementations. However,
we observe that in these techniques semantics are still
intertwined with a particular implementation strategy
that is shared among many if not all the language
features. The experiments in this paper show that the
semantics of features are often too coarse grained. This
cripples the ability to easily combine them, and thus
hinders evolution. The semantics of features that con-
tain boilerplate specifications can relatively easily made
modular. However, dependencies on a shared interaction
among different language features are harder to tackle
and require specific abstractions. Lastly, entirely new
mechanisms are needed to capture the subtile changes
in semantic specifications in order to yield a coherent
overall language semantics.

In order to better support the evolution of languages,
we first require a better understanding of how languages

• T. Cleenewerck works at the PROG Lab of Computer Science Department,
Vrije Universiteit Brussel, Belgium
E-mail: tcleenew@vub.ac.be

• R. Toledo works at the PLEID Lab of Computer Science Department
(DCC), University of Chile, Chile
E-mail: rtoledo@dcc.uchile.cl

evolve. More precisely, in the first part of the paper, we
investigate how the different features of languages affect
one another. We turn a series of language evolutions
into a product family [PBvdL] by studying their com-
monalities and variabilities. We then analyze the current
implementations from this point of view. In the second
part, we determine how we can decouple the shared
implementation strategy from the language features and
ultimately present some indications as to how we can
specify the semantics as modular composable exten-
sions by increasing the abstraction level of semantical
specifications. We start from a straightforward scheme
implementation as presented in [Kri96] and improve it
with the implementation techniques found in the Linglet
Transformation System (LTS) [Cle07].

2 MOTIVATING PROBLEM: EVOLUTION
GRAPH OF INTERPRETERS

In the text book by Krishnamurthi [Kri96], programming
languages are thought by means of interpretation and
application. Programming language concepts are gradu-
ally introduced to students by incrementally adding new
language features. The author starts with a language
for simple arithmetics called AE. He then creates the
language WAE where he adds the with construct with
substitution semantics. He further evolves the WAE
language with first-order functions with substi-
tution and then later with a store to attain the languages
called F1WAE and F1WAE (ds1) respectively. This pro-
cess continues with language features like functions,
conditional expressions, lazy evaluation etc.

The language evolutions follow a particular pedagog-
ical scenario. Because of this, little or no attention is
paid on separating the impact on the interpreter when
changing from one version to another. In other words,
language evolution is basically handled by copy-pasting
a previous version of an interpreter and subsequently
modifying it. Hence, the various concepts are not clearly
separately defined. Changes to previous semantics are
easily overlooked, especially the subtle ones. There are
several drawbacks of this approach.

1. The term “ds” stands for data store or just store.



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH TEXTBOOK LANGUAGES 2

• First, concepts are harder to understand and reason
about. For example, it is hard to understand what
the semantics of a function application are, irrespec-
tive of using substitution or a store.

• Second, it is harder to understand the impact of a
concept on other language features. For example,
it is hard to understand the impact of adding the
feature with (with substitution-based semantics) on
a language implementation.

• Third, implementation techniques are not made
fully explicit and cannot thus be reused as such. For
example, it is not possible to reuse the same store
for first order functions in a language with higher
order functions or with boxes.

• Fourth, experimenting with combinations of lan-
guage features that deviate from the standard ped-
agogical scenario is complicated, as such imple-
mentations require to cut and paste from different
language versions. For example, it is not possible to
easily construct a language with a store but without
first order functions.

In order to accommodate these needs, we analyzed the
commonalities and variabilities of this series of language
evolutions so as to turn them into a product family of
languages.

3 COMMONALITIES & VARIABILITIES

As the language evolutions of the interpreters are steered
by a pedagogical scenario, features are piled up so as to
gradually expose students to more complicated seman-
tics and features. Moreover, the scenario only implicitly
states which features depend on the existence of other
features.

In order to attain a product family, we have con-
ducted a communality and variability analysis using
FODA [KCH+90], [Cza98], augmented with some con-
straints to capture dependencies among features.

The resulting model reveals that many more combi-
nations can be explored. For example, each language
feature is hierarchically subdivided into subfeatures. The
feature identifier has three subfeatures: referencing
existing identifiers, defining new identifiers and chang-
ing the value associated to identifiers. A specific lan-
guage is the result of selecting the features of interest. For
example, the language called F1WAE can be defined by
selecting the following features: all arithmetic expres-
sions, identifier references and definitions
and function application.

The model also exposes all of the choices that have
to be made when implementing a language. Languages
are not solely determined by their features, also the
implementation techniques that are used to implement
the features and their interactions are made explicit
in the model. Amongst others, these are threading
and substituion. Threading transports bindings from
language features that define or set values (e.g. identifier
definitions or updates) to language features that refer to

the bindings (e.g. identifier references), whereas substi-
tution replaces the bindings in the language features.

In addition, the model captures explicitly the depen-
dencies among the existence of features. The hierarchical
nature of the model already entails some dependen-
cies e.g. identifiers, when chosen, must at least
be referentiable. Using constraints, dependencies among
features can be defined which cannot be captured hier-
archically e.g. arithmetic operators must fit the available
datatypes.

4 COARSE-GRAINED SEMANTICS

When analyzing the straightforward implementations of
our series of language interpreters in scheme we found
that language features are too coarse grained. The result
is that language evolutions cannot simply reuse and
extend the semantics of previous versions, but have
a significant impact. More precisely, we observe that
the semantics suffer from reuse of boilerplate code or
contains dependencies on shared interactions and on
other language features.

4.1 Boilerplate code

The semantics encoded in the interpreters suffer from
quite a lot of boilerplate code. Consider for example
the implementation of with using substitution seman-
tics. The with feature introduces an identifier which
names, or identifies, an expression and allows to use
this name in a larger computation. We refer to the later
computation as a sub expression. Upon evaluation, the
semantics of with substitute the expression bound to
the identifier within its sub expression. Substitution has
to traverse the whole sub expression in order to find
all occurrences of a identifier. It thus impacts all the
other language features which can be used as (a part
of) an expression. However, only a couple language
features are worthwhile to consider, e.g. identifier
reference and with itself. In case of constructs such as
addition, substitution passes through, and even in case
of constructs such as a number nothing has to happen
at all.

4.2 Dependencies on shared interactions

Semantics of features encoded in the interpreters are
polluted with specifications that depend on a shared
interaction among different language features. Consider
for example an identifier reference. Its imple-
mentation is polluted by the kind of semantics that are
used by other language features. In a substitution-based
semantics, identifier references are substituted away.
Hence, the semantics of a (unsubstituted) identifier refer-
ence produce an error. In case the semantics are defined
with a store, references are looked up in a given store.
Despite these differences, in fact, both implementations
return the value which is associated to identifiers. In the



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH TEXTBOOK LANGUAGES 3

former case, it is an error and in the latter case a value
from the store.

We encounter the same problem in function applica-
tions. Irrespective of a substitution or store semantics,
a function application in essence binds the parameters
of a function to its arguments, evaluates a function, and
removes the binding. However, the semantics of function
applications when specified in substitution, substitute
the formal parameter in its body whereas with a store, it
extends the store, creates a new binding and afterwards
restores the store again.

4.3 Dependencies on other language features

Semantics encoded in the interpreters also depend on
other language features in order to yield a coherent over-
all language semantics. In a lazy interpreter, for example,
there are some points where the implementation of a lazy
language forces an expression to reduce to a value (also
known as the strictness points of the language). These
strictness points occur in many other language features
e.g. upon the evaluation of an addition, the strictness
point ensures that actual values are produced so that the
interpreter can compute their sum. Hence, when making
languages lazy the original semantics cannot be reused,
but have to be carefully examined and changed.

5 TOWARDS MODULARLY COMPOSABLE EX-
TENSIONS BY INCREASING THE ABSTRACTION
LEVEL

In this section, we analyze how we can decouple the
shared implementation strategy from the language fea-
tures. We change the scheme implementation using state
of the art language development techniques and postu-
late how we can further improve the implementation in
order to construct the language evolutions as modular
extensions.

For our experiments we use LTS [Cle07]. LTS serves as
a experimental environment as it combines the strengths
of a large amount of language development techniques
and cultivates (and to some extent enforces) a disci-
pline to modularize the semantics of languages. First,
LTS strictly modularizes the syntax and semantics of
each language construct in a language module, called
a linglet. In LTS, languages are built by composing
linglets. As a result, language extensions are defined
modularly by adding and recomposing linglets. Second,
LTS features the unique ability of being customizable.
This allows developers to adopt the most optimal imple-
mentation for separating the different language features.
As such, developers can use advanced interaction strate-
gies and composition mechanisms in order to establish
the semantics of a language, while ensuring its modular
construction.

5.1 Abstracting from Boilerplate code
Let us revisit the language extension by the with fea-
ture using substitution semantics. The boilerplate code,
which does not contribute to the semantics, can be
removed in several steps by several techniques.

In a first step, we share common substitution behavior
among different language features. For example, the sub-
stitution semantics of all binary operations can be shared
among features such as addition and substraction
i.e. a new AST node is created where the substitution is
applied to the right and left. Likewise, the substitution
semantics of all terminals can be shared among features
such as identifiers and integers i.e. the current
AST node is returned.

In a second step, we abstract from the substitution
semantics of features such as terminals and binary op-
erations as no specific semantics have to be executed.
In fact, the substitution just “passes through”. This can
be abstracted by traversing the AST. The traversal itself
is defined on a meta level in order to abstract from the
specific AST nodes. With this technique all boilerplate
substitution semantics can then be omitted.

In a last step, we extract a reusable mechanism from
the above traversal which we call the propagation inter-
action strategy2 (PIS). We do this by parameterizing the
function which is propagated. This mechanism can thus
propagate any function call top-down on an AST.

We end up with an implementation of substitution
where only the language constructs are involved which
have particular semantics, and with an explicit mecha-
nism to implement it.

5.2 Dependencies on shared interactions
Sometimes the semantics of language constructs are too
dependent on an interaction that involves other lan-
guage constructs. Recall in our example that the seman-
tics of a function application either have to initiate the
substitution or either has to change the store. In turn, this
choice completely changes the semantics of an identifier
reference.

What is required here is a way to abstract from the
actual way the semantics are implemented. In case of
a identifier reference, the semantics need to retrieve
its value. LTS’s modularization mechanism provides an
abstraction to deal with missing information. Consider
the following three slightly different implementations.
The semantics of an identifier reference can:

• in case of substitution semantics, produce an error
indicating that a value has not been found;

• alternatively, also indicate that an error value is
necessary by parameterizing their semantics with a
lambda;

• in case of store semantics, simply assume that the
value is available (abstract from its definition site)
and lookup the value in the current AST node.

2. The term interaction strategies refers the fact the traversal deals
with multiple language features



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH TEXTBOOK LANGUAGES 4

Upon composition of identifier references in a lan-
guage, one does not need to distinguish between those
three implementation techniques. LTS provides an ab-
straction from these three implementations and can uni-
formly handle them, because in essence in all cases a
value is requested that is not available.

In some cases semantic dependencies have to be ex-
plicitly dealt with. Let us revisit the semantics of a func-
tion application. The implementation of its semantics is
quite different depending on whether substitution or a
store is used. Following the strict discipline of LTS to
modularize the semantics, a function application could
adopt an operational semantic style using the abstract
notion of a binding. Hence, the semantics consists of
these three steps:

1) extend the state of evaluation with a new binding,
2) execute the semantics of the function,
3) revert the state of evaluation by cancelling the

binding.
This formulation allows developers to reuse the se-

mantics of function application regardless of a substitu-
tion style or store style. In case of a substitution style:

1) change the state of evaluation to a new program
where the identifier is substituted

2) execute the semantics of the function,
3) do nothing, as the state of evaluation does not have

to be reverted
In case of a store:
1) change the state of evaluation to an extended new

environment containing the identifier
2) execute the semantics of the function,
3) revert the state of evaluation to the environment

where the new binding is removed
To conclude, semantic dependencies on shared in-

teractions can be avoided by raising the abstraction
level of the implementation of the semantics. As we
have demonstrated, for some dependencies LTS provides
some build in semantics to implicitly abstract from these
dependencies, for other dependencies explicit care is
needed. Future work has to determine whether new
abstractions can be implicitly supported and how.

5.3 Dependencies on other language features

The case where semantics also depend on other language
features to yield a coherent overall language semantics
is the most delicate task. The reason for this is that
subtle differences occur deep inside the semantics of a
feature and possibly many features. The challenging part
is to specify the correct locations and the changes in
semantics without violating the modularity of language
features. Note that the latter is not simply a restriction
but rather a fundamental requirement to avoid brittle
language extensions.

In the example given in the previous section, lazy eval-
uation impacts quite a lot on other language features.
More so, the places where strictness applies are difficult

to assess. Our goal is to be able to declaratively specify
the locations. For the example of strictness, strictness
has to be applied whenever the interpreter executes a
function of the host language. However, this definition
only covers a subset of all the places in the interpreter.
To complement this definition, we are increasing the
abstraction level of the semantics so as to better expose
the assumptions taken. In case of strictness, we could
require developers to tag the operations executed by the
interpreter. With these tags we could indeed declara-
tively specify all locations where strictness applies.

5.4 Discussion

LTS’s strict modularization and advanced interaction
and composition mechanisms brought us quite close to
a modular implementation of the considered language
evolutions. Boilerplate code could be removed and de-
pendencies on shared interactions could be avoided to
some degree. However, dependencies on other language
features posed a greater challenge. In fact, concerning
the two kinds of dependencies, we observed that in
our experiments that the granularity of the semantical
specifications should be decreased. Simply accessing and
intervening in the semantics of other language features
would violate their modularity. By consequence, we
would fail in our attempt to modularize the interpreter
extensions. So, in order to ensure the modularity, the
decrease in granularity should be accompanied by a raise
in the abstraction level of the semantical specifications.

6 CONCLUSION

In our continuing effort to improve programming lan-
guages so as to better suit the need of developers,
languages continuously need to evolve. In this paper, we
focus on the ability to evolve the semantics of languages.
An analysis of the changes of a wide range of interpreters
showed that changes from one language version to the
next often has a significant impact on the semantics of
the original language. We rewrote the interpreters using
state of the art language development techniques involv-
ing modular language constructs, reflective interpreter
extensions, and complex interaction and composition
techniques. A catalog of changes shows that only parts of
the extensions could be modularized. This is due to the
coarse-grained semantical descriptions using two low-
level semantical abstractions. This paper presents some
indications as to how we can resolve the situation in
order to effectively specify the semantics as modularly
composable extensions.

ACKNOWLEDGMENTS

The authors would like to thank Éric Tanter for his
insights in the problem context of this work and for the
fruitful discussions on the topic. They also want to thank
Johan Fabry for his comments on this work.



TOWARDS A PRODUCT LINE OF INTERPRETERS: AN EXPERIMENT WITH TEXTBOOK LANGUAGES 5

REFERENCES
[Cle07] Thomas Cleenewerck. Modularizing Language Constructs: A

Reflective Approach. PhD thesis, Vrije Universiteit Brussel,
2007.

[Cza98] Krzysztof Czarnecki. Generative Programming: Principles
and Techniques of Software Engineering Based on Automated
Configuration and Fragment-Based Component Models. PhD
thesis, Technical University of Ilmenau, 1998.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (foda) feasi-
bility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[Kri96] Shriram Krishnamurthi. Programming Languages: Appli-
cation and Interpretation. Computer Science Department,
Brown University, Providence, MA, USA, 1996.

[PBvdL] K. Pohl, G. Böckle, and F. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques.,
publisher= Springer, year=2005.


