
SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 1

Software variation by means of first-class
change objects

Peter Ebraert, Leonel Merino, Theo D’Hondt
Programming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.

Abstract—A growing trend in software construction advocates the encapsulation of software building blocks as features which better
match the specification of requirements. As a result, programmers find it easier to design and compose different variations of their
systems. Feature-oriented programming (FOP) is the research domain that targets this trend. We argue that the state-of-the-art
techniques for FOP have shortcomings because they specify a feature as a set of building blocks rather than a transition that has
to be applied on a software system in order to add that feature’s functionality to the system. We propose to specify features as sets of
first-class change objects which can add, modify or delete building blocks to or from a software system. We present ChEOPS, a proof-
of-concept implementation of this approach and use it to show how our approach contributes to FOP on three levels: expressiveness,
composition verification and bottom-up development.

F

1 SOFTWARE PRODUCT LINING

CUSTOMERS are becoming more and more demand-
ing and cost-conscious. They want specific products

that exactly cope with their needs at the lowest cost
possible. From the producers point of view, these two
requirements are usually conflicting. The development of
a specific product for every client takes a lot of time and
will consequently be more expensive. The development
of a more generic product is cheaper but usually does
not exactly cope with the specific needs of the customer.

In order to find the good balance of both requirements,
producers tend to use a business strategy called product
lining: offering for sale several related products of var-
ious sizes, types, colors, qualities or prices. The more
variations the product line offers, the more specific and
expensive its products tend to get. The fewer variations
the product line contains, the cheaper and less specific
its products become. Adopting this business strategy, the
producer’s goal boils down to cover the entire scope of
the product line, at the lowest possible production cost.

Software companies are the producers of either pure
software products or products with an important soft-
ware component (embedded systems). Driven by con-
sumer’s demand, they are also forced to increase vari-
ability of their products. Over the last decade, the man-
agement of this variability has become a major bottle-
neck in the development, maintenance and evolution of
software products. Next to that, many companies do not
even reach the desired level of variability or fail to do
so in a cost efficient manner. An explanation of this can
be found in the development approaches used by those

• E-mail: {pebraert},{lmerinod},{tjdhondt}@vub.ac.be

Research funded by a doctoral scholarship of the Institute for the Promotion
of Innovation through Science and Technology in Flanders (IWT Vlaanderen)
and by the Varibru research project initiated in the framework of the Brussels
Impulse Programme for ICT supported by the Brussels Capital Region.

companies.
A fundamental problem with many current develop-

ment approaches is that they view systems from the per-
spective of producers, rather than consumers. Producers
tend to specify their systems in terms of software building
blocks while the consumers tend to specify requirements
primarily in terms of features. This mismatch complicates
variability, since there is no direct mapping between
a composition of features and the software building
blocks that implement that composition. Recent research
in software construction increasingly reflects a common
theme: the need to realign modules around features
rather than software building blocks [1].

Feature-oriented programming (FOP) is the study of
feature modularity, where features are raised to first-
class entities [2]. In FOP, features are basic building
blocks, which satisfy intuitive user-formulated require-
ments on the software system. A software product is
built by composing features. Many case studies show
that FOP is an appropriate technique to cope with the
problems stated above (e.g. [3], [4], [5], [6]).

The following section briefly explains FOP, the state-
of-the-art approaches to FOP and their limitations. Sec-
tion 3 proposes an alternative way to specify features
and shows how this overcomes the limitations that are
pointed out in Section 2. Section 4 shows the advantages
of specifying features with first-class changes. Conclu-
sions and future work are pointed out in Section 5.

2 FEATURE-ORIENTED PROGRAMMING

Pioneering work on software modularity was made
in the 70’s by Parnas [7] and Dijkstra [8]. Both have
proposed the principle of separation of concerns that
suggests to separate each concern of a software system
in a separate modular unit. According to these papers,
this leads to maintainable, comprehensible software that

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 2

can easily be reused, configured and extended. FOP is
an implementation of that idea and modularises every
concern as a separate feature.

Aspect-oriented programming (AOP) [9] is another
implementation of that idea. Aspects focus on the quan-
tification – by specifying predicates that identify join
points at which to insert code, feature implementations
are actually much closer to framework designs. That is,
to add a feature to a framework, there are predefined
building blocks that are to be extended or modified.
In such designs, there is little or no quantification, but
there are indeed ”cross-cuts” [10]. Mixin Layers [11],
AHEAD [10], FeatureC++ [12], Composition Filters [13] and
Delegation Layers [14] are all state-of-the-art approaches
to FOP that implement features by cross-cuts that are
modifications or extensions to multiple software building
blocks.

The problem that we see with all approaches to FOP,
is that they all specify a feature by a set of building
blocks, rather than by a program transition that modifies
a program is such a way that the functionality – that that
feature implements – is added. In [10], Batory already
pointed out that a feature can be looked at as a function
that is applicable on a base (a set of program building
blocks). The application of a feature on a base yields
that the base is extended or modified with the building
blocks specified by that feature. From that point of view,
a software composition is a sequence of applied features
to one base. AHEAD [10] is an algebra that formalises
how features can be composed as functions.

We strongly agree with that vision, but find that
features should not be limited to extend or modify
existing programs. In some situations, a feature should
also be able to remove building blocks from a pro-
gram. Examples of such cases include anti-features (a
functionality that a developer will charge users to not
include 1, the creation of a demo-application (which
consists of all features, but only to a certain extent), or
the customisation of certain features so that the software
system copes with specific hardware requirements (e.g.
limited memory or computation power).

3 CHANGE AS FIRST-CLASS OBJECTS
Together with us, other researchers pointed out the use
of encapsulating change as first-class entities. In [15]
Robbes shows that the information from the change
objects provides a lot more information about the evolution
of a software system than the central code repositories.
In [16] Denker shows that first-class changes can be
used to define a scope for dynamic execution and that
they can consequently be used to adapt running software
systems. In this section, we first explain a model of first-
class changes and then show how these changes can be
used to do feature-oriented programming.

1. An anti-feature example can be found in the camera industry.
While it is more difficult for producers to make a camera that outputs
JPEG than a camera that outputs RAW, they charge more for a camera
that can output RAW than an identical one that can output JPEG.

3.1 Model of changes

We use the FAMIX model [17] to express the building
blocks of a software system. We chose FAMIX since
it provides a generic model to wich most class-based
programming languages (e.g. Java, C++, Ada, Smalltalk)
adhere. Figure 1 shows that the core of the FAMIX model
consists of Classes, Methods, Attributes and relations
between them.

Fig. 1. Famix - Core Model

The model of changes expresses the different kinds of
change operations that can be applied on those building
blocks. The UML class diagram of the model’s core
is presented in Figure 2. The building blocks that are
specified by the FAMIX model (FamixObject) form
the Subject of an Atomic Change. We identify three
possible commands on those subjects: the addition, the
removal and the modification of the building block. We
model those commands with the classes Add, Remove
and Modify respectively. A Composite Change is
composed of Changes (which can in their turn be of any
change kind). An elaborated discussion about atomic
and composite changes is is omitted because it does not
resides in the scope of this paper.

apply
undo

Add

apply
undo

Modify

apply
undo

Remove

apply
undo

Atomic
Change

add
remove
modify

Subject

sourceAnchor
commentsAt

FamixObject

...

composites

apply
undo

Composite
Change

apply
undo

timeStamp
isApplied
intent
user

Change

dependentChanges

changeSubject

changesOnWhichIDepend

parent
affectingChanges

Fig. 2. ChEOPS - Core Model

The figure shows a dependency relation between the
change objects, that is explained deeper in the follow-
ing section. Note that, thanks to the granularity of the
FAMIX model, our model allows the specification of
changes on the level of granularity of invocations and
accesses (below method level). For more information
about the model of changes, we refer to [18].

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 3

3.2 Change-oriented programming
In [19] and [20] we propose change-oriented program-
ming (ChOP): an approach that centralises change as
the main development entity. Some examples of devel-
oping code in a change-oriented way can be found in
most interactive development environments (IDE): the
creation of a class though interactive dialogs or the
modification of the code by means of an automated
refactoring. ChOP goes further than that, however, as it
requires all building blocks to be created, modified and
deleted in a change-oriented way (e.g. adding a method
to a class, removing a statement from a method, etc).

Change- and evolution-oriented programming sup-
port (ChEOPS) is an IDE plugin for VisualWorks, which
we created as a proof-of-concept implementation of
ChOP. ChEOPS implements the model of changes that
was described above and does not fall back on Change-
List [21] – a change management tool included in most
Smalltalk IDEs. Reasons for this are elaborated on in [19].

ChEOPS fully supports change-oriented programming
but also has the capability of logging developers produc-
ing code in the standard OO way. For that, ChEOPS in-
struments the IDE with hooks and uses them to produce
fine-grained first-class change objects that represent the
actions taken by the developer. Those objects can later
be grouped into a change set that specifies a transition
which might be applied to a base in order to extend the
base with the feature expressed by that change set.

Fig. 3. Buffer: (left) source code (right) change objects

Figure 3 shows the source code (on the left) and the
changes (on the right) of a Buffer. The change objects
are identified by a unique number: B1 is a change that
adds a class Buffer, B1.2.1 is a change that adds an
access of the instance variable buf. The dependencies
between change objects are also maintained by ChEOPS:
B1.2.1 depends on the change that adds the method to
which buf is added (B1.2) and on the change that adds
the instance variable that it accesses (B1.1).

We distinguish between two kinds of dependencies:
syntactic dependencies – imposed by the meta-model of
the used programming language (FAMIX) and exempli-
fied above – and semantic dependencies – that depend on
domain knowledge. ChEOPS supports the former in an
automatic way and the latter by allowing the grouping
of change objects in sets that represent features – denoted
by the rounded squares surrounding change objects.
Grouping changes in ChEOPS can be done in an ad-hoc
way after making the changes, or up-front by letting the

IDE know that all changes in the coming session will
implement one feature. The latter seems better as it is
less tedious, but requires a developer to cleanly split the
development in separate sessions that each implement
one feature.

Fig. 4. Buffer, Restore, Log features: (left) source code
(right) change objects

Figure 4 shows two extra features: Restore allows the
buffer to restore its previous value, Logging makes sure
that all methods of the buffer are logged when executed.
Notice the dashed line surrounding Logging’s changes:
It not only denotes that these changes implement the
Logging feature, but also that Logging is a flexible
feature. The difference between flexible (dashed lines)
and monolithic features (full lines) is that the latter can
only be applied as a whole, while the former can be ap-
plied partially. ChEOPS uses this semantic information
to verify whether a feature composition is valid and to
support the developer in resolving composition conflicts.
The next section elaborates on how ChEOPS does this.

4 ADVANTAGES FOR SOFTWARE VARIATION

We see three advantages in the specification of features in
terms of fine-grained first-class change objects: increased
expressiveness, improved composability and a novel bottom-
up approach to FOP.

In comparison with state-of-the-art approaches to FOP,
which allow the specification of features as a set of
program building blocks that might extend or modify
existing building blocks, our approach allows a more ex-
pressive feature specification. Features do not only express
the building blocks that implement a feature, but also
how that feature can be added to a composition. Next
to that, features can express changes below statement
level, which is more fine-grained than the state-of-the-
art. Finally, features can include the deletion of building
blocks, which is not supported by the state-of-the-art.

The dependencies between change objects provide the
fine-grained information that is required to verify whether
a certain feature composition is valid. In this model, a

SYMPOSIUM ON SOFTWARE VARIABILITY, AUGUST 2008 4

feature composition is valid if the union of the change
sets of the features in that composition does not contain
a change that has a dependency to a change object that
is not in the composition. In case we want to make a
composition of Buffer and Logging, L12 and L15
would form a problem as they respectively depend
on R1 and R2 which are not in the composition. The
semantic information stating that the Logging feature
is flexible, allows the exlusion of L12 and L15 from the
composition. This results in a valid composition {B1,
B11, B12, B13, B121, B131, L1, L11, L13, L14} that
specifies a buffer with a logging feature. In case the
Logging feature would not be flexible, the dependencies
could be used to tell the developer where the composi-
tion is failing (L12 and L15) and what actions could be
taken to resolve the conflict (add a feature that includes
changes R1 and R2).

The final advantage of specifying features by change
objects is that it enables a methodology for a bottom-
up approach to FOP. Instead of having to specify a
complete design of a feature-oriented application before
implementing it (top-down), our approach allows the
development of such an application in an incremental
way. Some state-of-the-art approaches also provide an
implementation of this bottom-up approach. In [22], Liu
shows that the ATS can be used to do so by manually
annotating all building blocks with information that
denotes the feature that building block belongs to. That
is a tedious task in comparison to our approach.

5 CONCLUSIONS
In this paper, we advocate feature-oriented program-
ming (FOP) as the right development technique for
software companies to provide variation in their soft-
ware products for satisfying the demand of customers
who are becoming more and more demanding and cost-
conscious. We find the state-of-the-art approaches to
FOP not satisfactory and present an alternative approach
based on the specification of features by sets of change
objects rather than program building blocks. Features are
functions that can be applied to add the functionality
they implement.

We present a model of first-class changes which can
add, modify or delete building blocks to or from a
software system. We propose to specify features in terms
of those first-class changes. This increases the expres-
siveness of features as they can specify adaptations to
fine-grained building blocks (classes, methods, attributes
and statements). The dependencies between the change
objects provide the necessary fine-grained information
to validate feature compositions. Finally, this way of
specifying features allows a bottom-up approach to do
FOP.

ACKNOWLEDGMENT
We would like to express are gratitude to Jorge Vallejos,
Tom Tourwé and Pascal Costanza for their valuable
contributions to this research.

REFERENCES
[1] M. Kratochvı́l and C. Carson, Growing Modular. Mass Customization

of Complex Products, Services and Software. Springer, March 2005,
no. 3540239596.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-
wise refinement,” in ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 187–197.

[3] A. Brown, R. Cardone, S. McDirmid, and C. Lin, “Using mixins
to build flexible widgets,” in Proc. 1st Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2002), G. Kiczales, Ed. ACM Press,
2002, pp. 76–85.

[4] D. Batory and S. O’Malley, “The design and implementation of
hierarchical software systems with reusable components,” ACM
Trans. Softw. Eng. Methodol., vol. 1, no. 4, pp. 355–398, 1992.

[5] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, “Creating
reference architectures: an example from avionics,” in SSR ’95:
Proceedings of the 1995 Symposium on Software reusability. New
York, NY, USA: ACM, 1995, pp. 27–37.

[6] D. Batory and J. Thomas, “P2: A lightweight dbms generator,”
University of Texas at Austin, Austin, TX, USA, Tech. Rep., 1995.

[7] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Comm. ACM, vol. 15, no. 12, pp. 1053–1058, dec
1972.

[8] E. W. Dijkstra, A discipline of programming. Englewood Cliffs,
New Jersey: Prentice-Hall, 1976.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in 11th
Europeen Conf. Object-Oriented Programming, ser. LNCS, M. Akşit
and S. Matsuoka, Eds., vol. 1241. Springer Verlag, 1997, pp. 220–
242.

[10] D. S. Batory, “A tutorial on feature oriented programming and
the ahead tool suite,” in GTTSE, 2006, pp. 3–35.

[11] Y. Smaragdakis and D. Batory, “Mixin layers: An object-oriented
implementation technique for refinements and collaboration-
based designs,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 11, no. 2, pp. 215–255, 2002.

[12] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “Featurec++: On
the symbiosis of feature-oriented and aspect-oriented program-
ming,” in GPCE, ser. Lecture Notes in Computer Science, R. Glück
and M. R. Lowry, Eds., vol. 3676. Springer, 2005, pp. 125–140.

[13] L. Bergmans and M. Akşit, “Composing crosscutting concerns
using composition filters,” Comm. ACM, vol. 44, no. 10, pp. 51–57,
2001.

[14] K. Ostermann, “Dynamically composable collaborations with
delegation layers,” in ECOOP ’02: Proceedings of the 16th Euro-
pean Conference on Object-Oriented Programming. London, UK:
Springer-Verlag, 2002, pp. 89–110.

[15] R. Robbes and M. Lanza, “A change-based approach to software
evolution,” Electronic Notes in Theoretical Computer Science, pp. 93–
109, 2007.

[16] M. Denker, T. Gı̂rba, A. Lienhard, O. Nierstrasz, L. Renggli,
and P. Zumkehr, “Encapsulating and exploiting change with
changeboxes,” in ICDL ’07: Proceedings of the 2007 international
conference on Dynamic languages. New York, NY, USA: ACM,
2007, pp. 25–49.

[17] S. Tichelaar, “Modeling object-oriented software for reverse engi-
neering and refactoring,” Ph.D. dissertation, University of Bern,
2001.

[18] P. Ebraert, B. Depoortere, and T. D’Hondt, “A meta-model for
expressing first-class changes,” in Proceedings of the Third Interna-
tional ERCIM Symposium on Software Evolution, T. Mens, K. Mens,
E. V. Paesschen, and M. D’Hondt, Eds., October 2007.

[19] P. Ebraert, J. Vallejos, P. Costanza, E. V. Paesschen, and T. D’Hondt,
“Change-oriented software engineering,” in ICDL ’07: Proceedings
of the 2007 international conference on Dynamic languages. New
York, NY, USA: ACM, 2007, pp. 3–24.

[20] P. Ebraert, E. V. Paesschen, and T. Dı́Hondt, “Change-oriented
round-trip engineering,” Vrije Universiteit Brussel, Tech. Rep.,
2007.

[21] University of Illinois, “Visualworks: Change list tool,”
http://wiki.cs.uiuc.edu/VisualWorks/Change+List+Tool, 2007.

[22] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactoring
of legacy applications,” in ICSE ’06: Proceedings of the 28th inter-
national conference on Software engineering. New York, NY, USA:
ACM, 2006, pp. 112–121.

