Cross-checking disambiguated product line variability models

Patrick Heymans
University of Namur
phe@info.fundp.ac.be

Klaus Pohl
University of Duisburg-Essen & Lero
klaus.pohl@sse.uni-due.de

Many industry sectors face the challenge of how to sat-
isfy the increasing demand for individualized software sys-
tems and software-intensive systems. The software product
line (PL) engineering paradigm (SPLE, see [5]) has proven
to empower organizations to develop a diversity of similar
systems at lower cost, in shorter time, and with higher qual-
ity compared to single system development [5].

Key to SPLE is to exploit the commonalities of the sys-
tems that belong to the PL and to handle the variability (i.e.,
the differences) between those systems. Commonalities are
properties and qualities that are shared by all systems of the
PL [1]; e.g., all mobile phones let users make calls.

In SPLE, two kinds of variability can be distinguished:
Software variability and PL variability.

Software variability refers to the “ability of a software
system or artefact to be efficiently extended, changed, cus-
tomized or configured for use in a particular context” [7].
This kind of variability is well known from the development
of single systems. As examples, an abstract Java super-class
allows different specializations to be used where the super-
class is used; an interface allows different implementations
to be chosen.

PL variability [1, 5, 3] is specific to SPLE and describes
the variation between the systems that belong to a PL in
terms of properties and qualities, like features that are pro-
vided or requirements that are fulfilled. It is important to
understand that defining PL variability, i.e., determining
what should vary between the systems in a PL and what
should not, is an explicit decision of product management
(see [3, 5]). As an example, product management might
have decided that the mobile phones of their PL should ei-
ther offer the GSM or the UMTS protocol.

A challenging task in SPLE is to map the PL variability
to software variability. This means that the reusable arte-
facts from which the systems of the PL are built (called the
core assets, which constitute the PL platform [5]) should be
constructed flexibly enough to allow for efficiently and ef-

Pierre-Yves Schobbens
University of Namur
pys @info.fundp.ac.be

Andreas Metzger
University of Duisburg-Essen

andreas.metzger @sse.uni-due.de

Germain Saval
University of Namur
gsa@info.fundp.ac.be

fectively building those systems [2, 6]. The decisions to be
made are crucial and mutually influence each other: which
systems to offer as part of the PL (i.e., what the scope of the
PL should be [6]), and how to design the reusable artefacts
to support this scope [3].

A lack of flexibility in the reusable artefacts, or a
scope that lacks awareness of the technical realizability,
can severely undermine the SPLE process. At best, time-
consuming and expensive changes of the reusable artefacts
or the scope will be required. Therefore, it is essential to
ensure that PL variability and software variability are con-
sistent from the beginning. But since all changes cannot
be anticipated, co-evolution of both variabilities over time
should be facilitated too.

In this presentation, we will introduce language and tool
support for these tasks. To disambiguate the documentation
of variability, we propose to record PL variability and soft-
ware variability in separate models and to interrelate them.
We use Feature Diagrams and Orthogonal Variability Mod-
els (OVM) respectively. Equiped with formal syntax and
semantics, those models are amenable to automatic analy-
sis in isolation. But, most importantly, since the cross-links
between them are also formalized, the models can be cross-
checked. We devise a set of checks that are straightforward
for the stakeholders to interpret, like whether all planned
systems of the PL can be realized, or whether the flexibility
of the reusable artefacts is useful. A prototypical implemen-
tation relying on a SAT solver is reported.

This presentation is based on a paper by the same au-
thors that was recently published in the proceeding of the
15th IEEE International Symposium on Requirements En-
gineering (RE’07) [4].

References

[1] J. Coplien, D. Hoffman, and D. Weiss. Commonality and
variability in software engineering. [EEE Softw., 15(6):37—



(2]

(3]
(4]

(5]

(6]

(71

45, November 1998.

I. John, J. Lee, and D. Muthig. Separation of variability di-
mension and development dimension. In /st Int’l Workshop
on Variability Modelling of Software-intensive Systems, Va-
MoS 2007, Limerick, Ireland, January 16-18, 2007, pages
45-49. Lero, 2007.

K. C. Kang, J. Lee, and P. Donohoe. Feature-oriented project
line engineering. IEEE Softw., 19(4):58-65, 2002.

A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variability
in software product lines: A separation of concerns, formal-
ization and automated analysis. In L. C. S. Press, editor, Pro-
ceedings of 15th IEEE International Requirements Engineer-
ing Conference, 2007.

K. Pohl, G. Bockle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer, 2005.

K. Schmid. A comprehensive product line scoping approach
and its validation. In 22rd Int’l Conference on Software En-
gineering, ICSE 2002, 19-25 May 2002, Orlando, Florida,
USA, pages 593-603. ACM, 2002.

M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy
of variability realization techniques. Softw. Pract. Exper.,
35(8):705-754, July 2005.



