
1

Design-by-Contract for Embedded Systems
Daniel Klünder, Jianmin Li and Stefan Kowalewski

Abstract—Design-by-contract is a software engineering technology from the object-oriented world that exploits runtime
assertions to define precise verifiable interface specifications with so-called invariants and pre- and post-conditions. This
paper describes our idea of extending design-by-contract to support assertions dealing with platform and environment
features essential in embedded systems like battery power, localization, or memory and CPU consumption to support
variation of these on different deployment targets. While others have focused on contracts as a means for component-
based design, i. e. for design time issues or dynamic service discovery, we suggest a runtime version to enhance
system reliability and aim at an actual implementation. This paper motivates the approach, compares it to related work
and sketches a possible implementation as well as an example application for mobile phones.

F

1 INTRODUCTION

THE ever increasing presence of informa-
tion technology along with the pervasion

of hardware and software into everyday life
boosts the need for engineering methods and
tools for the development of high quality em-
bedded systems. This trend is further amplified
by the rising complexity of such systems and
their usage for safety critical tasks. As complex-
ity is steadily increasing, variability techniques
like product lines gain ground in the develop-
ment of embedded systems.

One major point that distinguishes embed-
ded systems from desktop or enterprise soft-
ware is their tight interaction with the un-
derlying hardware and especially the perfor-
mance constraints that are imosed on them. It
is common practice that over the lifetime of
an embedded system the underlying hardware
is changed because of cost considerations or
supplier changes. The approach described in
this paper treats these different deployment
targets like variation points of the full hard-
and software system.

When reusing software components reliabil-
ity is even more important than for application-
specific development. A pragmatic technique
introduced to tackle reliability problems in case

• D. Klünder, J. Li and S. Kowalewski are with the Embedded
Software Laboratory at the Computer Science Department, RWTH
Aachen Technical University, Germany
http://www-i11.informatik.rwth-aachen.de

of system modifications is design-by-contract
(DBC) [1]. Nevertheless, software engineering
approaches from the non-embedded world like
this are not common practice in the embedded
field.

We agree with [2] that this is due to the
following reasons: embedded systems are en-
gineering artifacts involving computation that
is subject to physical constraints which arise
through interactions with the physical world.
This includes reactions to the physical envi-
ronment (reaction constraints) and execution
on a physical platform (execution constraints).
Hence, embedded systems design means mod-
eling of hardware, software, and environment
all of which are subject to physical constraints.
The separation of computation (software) from
physicality (platform and environment) does
not work. On the software side difficulties arise
in taming concurrency and incorporating phys-
ical constraints.

While others are working on the inclusion
of reaction constraints into DBC [3], this paper
focuses on the execution constraints caused
by the platform and the environment of the
system like e. g. power supply, memory or CPU
shortage, or localization. Thereby a contract
between software and underlying hardware is
established that is ensures the validity of its
rules throughout hardware variations.

There is some related work on the usage
of DBC in embedded systems: Li et al. [4]
focus on contracts used in combination with a

http://www-i11.informatik.rwth-aachen.de

2

component model similar to CORBA (common
object request broker architecture). The contract
is defined in XML accompanying each compo-
nent and is used for dynamic service discovery
at runtime, though no application example is
given. Urting et al. [5] focus on timing is-
sues and the representation of components and
their contracts in different views. In contrast
to this related work we plan to use contracts
included into the programming language and
their utilization not for service discovery but
for expression of execution constraints related
to platform and environment. Furthermore, we
plan to examine its usefulness and possible
improvements in a case study using a mobile
phone application.

The rest of this paper is structured as follows:
the next section gives an introduction into DBC
and the inclusion of platform and environment
features. Section 3 details the implementation
idea, sketches an application example, and con-
cludes the paper.

2 DESIGN-BY-CONTRACT

It has long been recognized that runtime asser-
tion checking can be a beneficial software engi-
neering technology [6]. The first object-oriented
programming language to advocate the use of
assertions is Eiffel [7], [8]. Meyer, the founder of
Eiffel, also introduced the term DBC, the usage
of assertions in object-oriented programs [1]. It
is used as a permanent defensive mechanism
for fault detection and was mainly influenced
by the work of Floyd [9], Hoare [10], and
Dijkstra [11]. Assertions in other languages like
Alphard [12], Euclid [13], and Anna [14] also
influenced DBC in Eiffel. Further influences
were the specification approach advocated by
Liskov and Guttag [15], and the Z notation [16].

Eiffel offers contracts by including assertions
in routines as preconditions and postcondi-
tions, in loops and classes as invariants and
contract handling in case of inheritance. A con-
tract entails benefits and obligations for both
contract parties. In case of a routine call by a
class’ client this means if the caller guarantees
the precondition of a routine then the callee
promises to deliver a final state in which the

postcondition is satisfied. Thus, the precondi-
tion binds the client while the postconditions
binds the class.

While preconditions and postconditions de-
scribe properties of individual routines, invari-
ants prescribe global properties of class in-
stances which must be preserved by all rou-
tines, such that they are satisfied by all in-
stances of the class at all stable times. This
means that an invariant must be true at in-
stance creation and before and after each re-
mote routine call but can be violated during
the call.

DBC is used during design-time for clear
interface specification and debugging. During
runtime contracts can be switched off or com-
bined with exception handling to treat unex-
pected runtime situations. Apart from Eiffel
there are contracts for many other languages,
e. g. for .Net [17] or Java [18].

2.1 Design-by-contract Utilizing Platform
and Environment Features

When environment and platform features are
used in DBC those two become contractors
of the affected class, i. e. the contract entails
benefits and obligations for them. The precon-
dition of a routine call must then not only
be guaranteed by a calling client but also by
the environment, e. g. a certain quality of ra-
dio reception, localization, or available battery
power. On the other hand the postcondition of
the called routine might ensure benefits for the
environment like limited usage of resources.

Beugnard et al. [19] categorize contracts in
four categories:

• syntactic contracts
• behavioral contracts
• synchronization contracts
• quality of service contracts

Contracts including environment and platform
features belong into the second and fourth
category. Collet et al. [20] suggest a contract
should provide:

• a specification formalism
• a rule of conformance
• a runtime monitoring technique

3

Thus, the environment and platform features
supported in contracts have to be quantifiable
and measurable at runtime.

3 APPLICATION EXAMPLE

Modern Jass [21] implements DBC for Java and
supports pre- and postconditions for methods,
invariants for classes, invariants and variants
for loops as well as check statements and in-
heritance of assertions. On top of this tool we
plan to utilize a mobile phone’s platform API
for statements about localization of the device,
battery power left, quality of radio reception,
and memory and cpu usage.

Fig. 1 shows a small example of an alarm
clock on a mobile phone, that can only be
set and activated if the device has enough
power left. The shown diagram is a static dia-
gram of the Business Object Notation (BON)
used in the Eiffel world as an alternative to
UML class diagrams. As shown for the rou-
tine set_alarm_time pre- and postcondi-
tions are indicated by a question mark and an
exclamation mark respectively. If the routine
turn_alarm_on is called because of user in-
teraction and the runtime assertion on battery
power fails, an exception would be thrown in
the class responsible for power management, in
this case PowerManager. It is the obligation
of this class to handle the exception by e. g.
informing the user and offering to switch off
unneeded devices like GPS.

The main advantage of putting the assertions
into a contract is a clear interface to the routine
with precise obligations for caller, callee and
environment. A programmer might as well test
the parameters of the assertions upon entering
the routine but there is no definite guideline
how wrong parameters should be handled or
how the method caller or the environment
could be informed about the failure. Further-
more, the application of DBC prevents doubled
checking of parameters in caller and callee, and
enables the evaluation of assertions at runtime
including a statement on who to blame for the
failure. This advantage is even more important
if third party libraries are used for develop-
ment.

REFERENCES

[1] B. Meyer, “Applying ”design by contract”,”
Computer, vol. 25, no. 10, pp. 40–51, 1992. [Online].
Available: http://portal.acm.org/ft gateway.cfm?id=
619797&type=external&coll=GUIDE&dl=GUIDE&CFID=
25681883&CFTOKEN=58143031

[2] T. A. Henzinger and J. Sifakis, “The embedded systems
design challenge,” in Proceedings of the 14th International
Symposium on Formal Methods, ser. Lecture Notes in Com-
puter Science, vol. 4085. Springer, 2006, pp. 1–15.

[3] P. Nienaltowski and V. Arslan, “SCOOPLI: a library for
concurrent object-oriented programming on .NET,” Jour-
nal of .NET Technologies.

[4] S. Li, X. Li, and J. Wu, “Components and contracts
for embedded software,” in ECBS ’05: Proceedings of
the 12th IEEE International Conference and Workshops
on Engineering of Computer-Based Systems. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 19–24.
[Online]. Available: http://portal.acm.org/ft gateway.
cfm?id=1053859&type=external&coll=GUIDE&dl=
GUIDE&CFID=25680250&CFTOKEN=79034257

[5] D. Urting, S. v. Baelen, T. Holvoet, and Y. Berbers, “Em-
bedded software development: Components and con-
tracts,” in IASTED international conference: parallel and
distributed computing and systems (IASTED-PDCS), T. F.
Gonzalez, Ed., 2001, pp. 685–690.

[6] L. A. Clarke and D. S. Rosenblum, “A historical
perspective on runtime assertion checking in
software development,” SIGSOFT Softw. Eng.
Notes, vol. 31, no. 3, pp. 25–37, 2006. [Online].
Available: http://portal.acm.org/ft gateway.cfm?id=
1127900&type=pdf&coll=GUIDE&dl=GUIDE&CFID=
25680250&CFTOKEN=79034257

[7] B. Meyer, Eiffel: The Language. Prentice Hall, 1992.
[8] ——, “Eiffel: a language and environment for software

engineering,” J. Syst. Softw., vol. 8, no. 3, pp. 199–246,
1988.

[9] R. Floyd, “Assigning meanings to programs,” Mathemat-
ical Aspects of Computer Science, vol. 19, no. 19-32, p. 1,
1967.

[10] C. Hoare, “An axiomatic basis for computer program-
ming,” Communications of the ACM, vol. 12, no. 10, pp.
576–580, 1969.

[11] E. Dijkstra, “Guarded commands, nondeterminacy and
formal derivation of programs,” Communications of the
ACM, vol. 18, no. 8, pp. 453–457, 1975.

[12] W. Wulf, R. London, and M. Shaw, “An introduction to
the construction and verification of alphard programs,”
IEEE Transactions on Software Engineering, vol. 2, no. 4, pp.
253–265, 1976.

[13] G. Popek, J. Horning, B. Lampson, J. Mitchell, and R. Lon-
don, “Notes on the design of euclid,” Proceedings of an
ACM conference on Language design for reliable software table
of contents, pp. 11–18, 1977.

[14] D. Luckham and F. Von Henke, “An overview of anna,
a specification language for ada,” Software, IEEE, vol. 2,
no. 2, pp. 9–22, 1985.

[15] B. Liskov and J. Guttag, Abstraction and specification in
program development. The MIT Press, 1986.

[16] J. Spivey, The Z notation: a reference manual. Prentice Hall,
1992.

[17] K. Arnout and R. Simon, “The .net contract wizard:
Adding design by contract to languages other than
eiffel,” in TOOLS ’01: Proceedings of the 39th International
Conference and Exhibition on Technology of Object-Oriented

http://portal.acm.org/ft_gateway.cfm?id=619797&type=external&coll=GUIDE&dl=GUIDE&CFID=25681883&CFTOKEN=58143031
http://portal.acm.org/ft_gateway.cfm?id=619797&type=external&coll=GUIDE&dl=GUIDE&CFID=25681883&CFTOKEN=58143031
http://portal.acm.org/ft_gateway.cfm?id=619797&type=external&coll=GUIDE&dl=GUIDE&CFID=25681883&CFTOKEN=58143031
http://portal.acm.org/ft_gateway.cfm?id=1053859&type=external&coll=GUIDE&dl=GUIDE&CFID=25680250&CFTOKEN=79034257
http://portal.acm.org/ft_gateway.cfm?id=1053859&type=external&coll=GUIDE&dl=GUIDE&CFID=25680250&CFTOKEN=79034257
http://portal.acm.org/ft_gateway.cfm?id=1053859&type=external&coll=GUIDE&dl=GUIDE&CFID=25680250&CFTOKEN=79034257
http://portal.acm.org/ft_gateway.cfm?id=1127900&type=pdf&coll=GUIDE&dl=GUIDE&CFID=25680250&CFTOKEN=79034257
http://portal.acm.org/ft_gateway.cfm?id=1127900&type=pdf&coll=GUIDE&dl=GUIDE&CFID=25680250&CFTOKEN=79034257
http://portal.acm.org/ft_gateway.cfm?id=1127900&type=pdf&coll=GUIDE&dl=GUIDE&CFID=25680250&CFTOKEN=79034257

4

SMART ALARM

ALARM CLOCK

Invariant

current_time, alarm_time: TIME

 -- current or alarmTime

is_alarm_set: BOOLEAN

 -- Is alarm set?

set_current_time: TIME

 -- current-time is set.

set_alarm_time: TIME

 -- alarm_time is set

? get_power_manager.power_level > power_min
! alarm_time current_time and is_alarm_set

get_alarm_time: TIME

 -- display the alarm_time

turn_alarm_on

 -- turn alarm on

? is_alarm_set and ¬ is_bell_on and alarm_time =
current_time and
get_power_manager.power_level > power_min
! Result = is_bell_on

turn_alram_off

 -- turn alarm off

alarm_status: BOOLEAN

 -- alarm_status is on or off

bell-status: BOOLEAN

 -- bell_status is on or off

? is_bell_on
! Result = ¬ is_bell_on

current_time ≠ void

POWER MANAGER

power_level: VALUE

 -- the rest power value of the device

get_power_level: VALUE

 -- display the power values

...

Fig. 1. Alarm clock example

Languages and Systems (TOOLS39). Washington, DC,
USA: IEEE Computer Society, 2001, p. 14. [Online].
Available: http://portal.acm.org/ft gateway.cfm?id=
884716&type=external&coll=GUIDE&dl=GUIDE&CFID=
9675813&CFTOKEN=60647003

[18] R. Kramer and C. Partners, “icontract-the java tm design
by contract tm tool,” Technology of Object-Oriented Lan-
guages, 1998. TOOLS 26. Proceedings, pp. 295–307, 1998.

[19] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins,
“Making Components Contract Aware,” 1999.

[20] P. Collet, “Functional and Non-Functional Contracts Sup-
port for Component-Oriented Programming,” First OOP-
SLA Workshop on Language Mechanisms for Programming
Software Components, OOPSLA 2001.

[21] J. Rieken, “Design by contract for java - revised,” Master’s
thesis, Universität Oldenburg, April 2007.

http://portal.acm.org/ft_gateway.cfm?id=884716&type=external&coll=GUIDE&dl=GUIDE&CFID=9675813&CFTOKEN=60647003
http://portal.acm.org/ft_gateway.cfm?id=884716&type=external&coll=GUIDE&dl=GUIDE&CFID=9675813&CFTOKEN=60647003
http://portal.acm.org/ft_gateway.cfm?id=884716&type=external&coll=GUIDE&dl=GUIDE&CFID=9675813&CFTOKEN=60647003

	Introduction
	Design-by-contract
	Design-by-contract Utilizing Platform and Environment Features

	Application Example
	References

