
1

VMADL: An Architecture Definition Language
for Variability and Composition

of Virtual Machines
Stefan Marr and Michael Haupt

Hasso-Plattner-Institut, University of Potsdam, Germany
{stefan.marr,michael.haupt}@hpi.uni-potsdam.de

Abstract—High-level language virtual machines (VMs) can be used on a wide range of devices as a basic part of the deployed software
stack. As the available devices differ to a large degree in their applications and their available resources, distinct implementation
strategies have to be used for certain parts of a VM to meet the special requirements. This paper motivates the need for an architecture
definition language for complex software systems like VM implementations. The basic concepts and language constructs of this
language, which is called VMADL, are introduced. To motivate further discussions, the benefits of this approach are briefly discussed.

Index Terms—Modularization, Language, Variability, Features, Product Lines, Virtual Machines, Composition.

F

1 INTRODUCTION

IN industry and commerce, software is an inherent part
of the value chain, not only as part of the business

processes but also as part of almost every technical
product which is produced. With the rapidly changing
business requirements, software needs to be adapted
and customized for specific requirements frequently.
Moreover, software systems are frequently required to
be deployed in different environments, in all of which
they are expected to exhibit the same, or very similar,
functionality. In many cases, it is not only a matter of
enhancing a software product by new features, but it
is also necessary to be able to omit features, or even
to realize them in different ways depending on the
requirements imposed by the deployment environment.

Up to now, this is most often a problem of software
evolution and thus, has been solved by solutions specif-
ically designed for each particular software system. A
product-line oriented view on software systems seems
to be more accurate as it fosters variability while main-
taining a consistent perspective on the overall system.

In the field of high-level language virtual machines
(VMs) [1], the challenge is to be able to compose a
VM from different sets of features for a wide range of
application domains. Highly tangled modules [2] have to
be interchangeable. Different implementation strategies
have to be available to build VMs for systems rang-
ing from resource-constrained systems, e. g., embedded
or mobile devices, to standard consumer systems for
desktop applications and even large high-performance
computing systems.

To achieve this aim, language support for coping with
the complex challenges which are inherent to VM im-
plementations is required. Mechanisms to handle cross-

cutting concerns which are not manageable by usual
decomposition techniques are necessary as well as is
support for a more advanced way to describe module
interaction than would be possible with languages typ-
ically used to implement VMs.

In the next section, we introduce the basic concepts
proposed by the Virtual Machine Architecture Definition
Language (VMADL) [2] to be able to achieve a higher
degree of variability and composability in complex soft-
ware systems such as high-level language virtual ma-
chines. In Section 3, our results are briefly discussed
and a conclusion is drawn to encourage further discus-
sions and work to assess the ideas and applicability of
VMADL.

2 VMADL
The main aim of the Virtual Machine Architecture Def-
inition Language (VMADL) [2] is to provide module
descriptions on an architectural level and to enable
developers to explicitly express module interactions and,
thus, describe the overall architecture more declaratively.

A service module defines the service boundaries in
terms of an interface and of interactions with other mod-
ules. It can comprise several implementation modules
for which it provides a combined bidirectional interface
definition on an architectural level. Typically, it con-
sists of function definitions and additional “points of
interests”, i. e., pointcut definitions provided for usage
by other service modules. Furthermore, relationships
with other modules are defined in a structured way
to improve the variability and definition of optional
dependencies to allow module interchange. VMADL’s
bidirectional interfaces are similar to, and inspired by,
open modules [3] and crosscut programming interfaces
(XPIs) [4].



2

2.1 Language Constructs

At the current stage of development, VMADL incorpo-
rates language constructs specifically designed for the
modularization of software systems with highly inter-
twined modules, as usually found in VM implementa-
tions.

The basic entity described is a service module which
typically relies on the availability of other modules it
depends on. The require statement expresses this de-
pendency explicitly to make it visible to the developers.

The main body of such a service module definition can
hold, e. g., the definition of functions or the public state
available to other modules. Interaction among modules
is defined here, too, using aspect-oriented means. For
consistency, it is expected that such aspects will only
make use of functions and pointcuts provided explicitly
by module definitions. The expose section is used to
specify additional “points of interest”, i. e., events de-
fined by pointcuts that are exposed to other modules.

Named sections are meant to provide additional struc-
ture to a service module definition and can hold the
same content as the overall service module definition.
In addition, these sections can be used to replace spe-
cific parts of a module definition from within another
module. This is necessary to be able to adapt parts of
very basic modules, e. g., object model definitions.

service MyServiceModule {
require OtherModule;

// declaration of functions
// and import or #includes
#include <module.Foo>
void MyServiceModule_doSomething();
...

// advices on service module level
advice execution(OtherModule_doFoo())

: before() { ... }
...

expose { /* list of pointcut
definitions */ }

for OptionalModule { ... }

MyNamedSection { ... }

replace SomeModule.NamedSection { ... }

startup {
void initialize_me();
expose { ... }

}
shutdown { ... }

}

Listing 1. VMADL Language Constructs

Optional sections are identified by the for keyword
and the name of the module for which the definitions
inside this part are needed. Like for named sections, the
same constructs as for the overall service module can be
used inside of an optional section.

In addition to the language constructs introduced here,
an object definition language [5] might be necessary to be
able to refine classes defined in another module. There
are cases where a module needs an additional field or
method within a class, which could be handled by such a
language if the used implementation or aspect language
does not already provide a mechanism for inter-type
declarations.

3 CONCLUSION

VMADL was specifically designed for the modulariza-
tion of virtual machines, but could be used for other
software systems as well. It provides constructs for
an increased variability and composition of modules
in a product-line like manner. Furthermore, it locates
architectural concerns like dependencies and interaction
between modules in a more explicit and descriptive
way to help developers better understand the complex
coherences in such software systems.

As far as our work has allowed us to assess the
benefits of this approach at the moment, VMADL shows
valuable advantages over the pure implementation and
the employment of aspect languages. Furthermore, it
improves maintainability of the software, since the de-
velopers are able to get a better understanding of module
interaction and relationships in the system and thus are
able to implement changes to the system more efficiently.

This conclusion from the results of our work is subject
to evaluation in our ongoing work. We will use software
metrics to be able to underpin the results with some
basic figures according to complexity and performance.
Furthermore, an experiment with students will be con-
ducted to be able to determine the degree to which
VMADL supports reasoning about a system’s architec-
ture and whether module dependencies are recognized
more easily and accurately than without VMADL.

REFERENCES
[1] J. E. Smith and R. Nair, Virtual Machines. Versatile Platforms for

Systems and Processes. Morgan Kaufmann, 2005.
[2] M. Haupt, B. Adams, S. Timbermont, C. Gibbs, Y. Coady, and

R. Hirschfeld, “Disentangling virtual machine architecture,” under
review for IET Journal special issue on Domain-Specific Aspect
Languages, 2008.

[3] J. Aldrich, “Open modules: Modular reasoning about advice,” in
ECOOP 2005 - Object Oriented Programming: 19th European Confer-
ence, Glasgow, UK, July 25-29, 2005. Proceedings, ser. LNCS, vol. 3586.
Springer, 2005, pp. 144–168.

[4] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari,
Y. Cai, and H. Rajan, “Modular software design with crosscutting
interfaces,” IEEE Software, vol. 23, no. 1, pp. 51–60, 2006.

[5] S. Timbermont, B. Adams, and M. Haupt, “Towards a DSAL for
Object Layout in Virtual Machines,” in 3rd Domain-Specific Aspect
Languages Workshop, 2008, http://dsal.dcc.uchile.cl/2008/ Media/
timbermont.pdf.

http://dsal.dcc.uchile.cl/ 2008/ _Media/ timbermont.pdf
http://dsal.dcc.uchile.cl/ 2008/ _Media/ timbermont.pdf

	Introduction
	VMADL
	Language Constructs

	Conclusion
	References

