
A Method for Reducing Arbitrary Complexity in Reusable
Embedded Systems Code - The Frame Technology Idiom

Thomas Patzke
Fraunhofer Institute Experimental Software Engineering

Product Line Architectures
Fraunhofer-Platz 1

67663 Kaiserslautern, Germany

Abstract

Many software development efforts aim at building more
reusable software, for example through product line engi-
neering approaches such as PuLSE1 [4]. In the embed-
ded systems application domain, the dominant program-
ming languages C and C++ offer a rich spectrum of mecha-
nisms for handling variability. However, most organizations
have adopted ad-hoc mechanisms [11], resulting in overly
complex code that cannot be reused in the long term. For
example, a monoculture of conditional compilation forces
all modules to consist of parts with different change rates,
while mechanisms that depend on programming language
semantics disallow extension at arbitrary variation points.

Thus, ad-hoc implementations lead to unnecessary vari-
ability management complexity, which increases the effort
for understanding, using and evolving the code as a whole.
Our method aims at reducing variability management com-
plexity by guiding the developer through the variability im-
plementation process, so that the code contains just enough
complexity as required in the given context.

This paper discusses one sub-element of the method’s
support components: the frame technology mechanism,
which generalizes the reuse concepts of most other mech-
anisms, such as cloning, polymorphism, conditional compi-
lation, or aspect-orientation.

1. Overview

A problem in many software development efforts is to
develop reusable artifacts, and to keep them reusable over
long periods of time. Common code alone is not suffi-
cient to make software implementations usable in similar
contexts, and hence truly reusable implementations contain
common code with some intrinsic variation.

1PuLSE is a registered trademark of Fraunhofer IESE

As the code evolves in practice, the same set of mech-
anisms is often applied again and again. A monoculture
of mechanisms emerges, which makes it harder and harder
to manage new or to reconfigure existing variabilities. For
example, conditional compilation leads to modules of com-
mon and nested interdependent variable parts, whose de-
pendencies are hard to control in the long run [10].

In order to avoid these difficulties, we developed an in-
cremental product line implementation method which aims
at code complexity reduction by balanced variability mech-
anism selection. Initially, an implementation of a single sys-
tem or a set of systems exists, plus new unrealized reuse
requirements. These two elements serve as inputs for our
method, whose output is a new product line implementation
that is just as complex in terms of variability management
as required. The method uses three support components to
assist the software developer in building the new product
line code: A pattern language of variability mechanisms, a
collection of product line evolution scenarios, and a com-
plexity metrics suite.

The remainder of the paper is concerned with the pattern
language, and presents frame technology as one particular
idiom. For reasons of space, the details of the other idioms,
the evolution scenarios and the metrics are not discussed.
The evolution scenarios represent typical issues a software
developer faces when he evolves reusable code. They serve
to identify a particular evolution task in a given situation,
and they suggest minimal sequences for realizing the vari-
abilities. The metrics suite is used to assess whether the
software’s variability management quality becomes critical.

2. Related Work

Our approach combines and extends ideas from the fol-
lowing areas: variability mechanisms, practical reuse meth-
ods, continuous evolution, and simplicity/complexity.

A number of variability mechanism collections exist

[2, 17, 7, 9]. In contrast to these, we do not just catalog what
works theoretically and in unspecified application areas, but
focus on practical mechanisms in embedded systems devel-
opment.

Practical reuse methods [11, 6, 3] often suggest only
transformations from design to implementation. We con-
sider a wider context, for example, existing code, mecha-
nisms and tools, or developer experience. We also apply
reuse optimization concepts, as offered by frame technol-
ogy [3], to existing variability mechanisms.

Approaches for managing the long-term evolution of
software and non-software artifacts have been suggested in
[12, 1, 8]. [12] suggests software evolution laws. As in
[1], our method is iterative, based on sequences, and never
regards the artifacts as finished. In contrast to refactorings
[8], we address a larger group of transformations that are not
just concerned with preserving the code’s execution logic at
runtime. We focus on varying any kind of software element
that is fixed at execution time, such as data structures or
execution logic.

The importance of complexity-awareness has also been
discussed elsewhere [1, 5, 18, 16]. Our approach explicitly
focuses on maintaining simplicity by ’just enough’ variabil-
ity management.

3. Variability Mechanism Pattern Language

As a major building block for guiding the developer
in applying appropriate variability mechanisms, we devel-
oped a pattern language of C/C++ variability mechanisms.
The variability mechanism idioms do not stand in isolation,
they are meant to be used together, as an interconnected
whole, a pattern language. As part of each idiom descrip-
tion, the forces it solves is discussed, which characterizes
its reusability profile and (unnecessary) complexities.

Within the larger method, the variability mechanism
idioms are meant to be used by the software developer
to evolve an existing software implementation into a new
product line implementation. In order to help the devel-
oper to rapidly access relevant subtopics, each idiom is or-
ganized akin to the GoF format. For reasons of space, we
only present excerpts from [14].

The following list gives an overwiew of the idioms and
their intents. Each idiom was chosen for inclusion in the
pattern language because it is either in active use for man-
aging variability in embedded systems development, as
demonstrated in its ’Known Uses’ subsection, or because
there are indicators that the mechanism is becoming impor-
tant for variability management in C/C++. The set is not
meant to be fixed, but open for extension and contraction.

Cloning: Given a source code part which has proven its usability
in existing software systems, adapt it to suit the changing

needs of a new system. Cloning allows you to rapidly evolve
common code without risking to harm its previous users.

Conditional Execution: Separate common from variable algo-
rithms by extracting the variable algorithms into functions,
which are conditionally invoked by the common code, de-
pending on runtime parameter states. Conditional Execution
allows you to manage predicted optional or alternative vari-
able code, without introducing separate modules.

Polymorphism: Avoid coupling modules with common function-
ality to modules with variable functionality by letting the
common modules define and invoke callbacks which the
variable modules implement. Subtype Polymorphism allows
parts of an algorithm to change at runtime.

Late Module Binding: Decouple common from variable source
code modules by only partially implementing the common
parts, deferring the completion of the missing realizations to
a later stage in the compilation process. Late Module Bind-
ing allows common and variable modules to evolve indepen-
dently, without runtime efficiency penalties in the resulting
executable.

Conditional Compilation: Decouple common from variable
source code, so that the variable code is highlighted, and
can be automatically included or excluded from compilation.
Conditional Compilation allows you to manage optional or
alternative variable code next to common code, without in-
troducing new modules.

Aspect-Orientation: Facilitate decoupling common from vari-
able modules by allowing the common source code in the
common module to be extended or contracted by variable
code at its function boundaries. Aspect-Orientation allows
arbitrary common functions to be extended or overridden in
predicted or unpredicted ways.

Frame Technology: Decompose textual information according
to its stability over time, so that modules which need to
change less frequently become nearly independent of mod-
ules that evolve more often. Frame Technology facilitates
to keep source code localized which shares the same change
rate, especially in cases where otherwise the programming
language syntax would enforce this code to crosscut several
modules.

4. Frame Technology

This section presents excerpts from the frame technology
idiom, a variability mechanism developed by Bassett [3]. In
recent years, the author of this paper has been developing
various kinds of frame technology tool support [15] and ap-
plied its concepts in numerous embedded systems projects,
for example in the automotive and consumer electronics ap-
plication domain.

4.1 Motivation

A transceiver module of a wireless sensor node requires
an optional acknowledgement feature in more reliable prod-

ucts. This is its pseudocode, realized with Conditional
Compilation:

/∗ t r a n s c e i v e r . h ∗ /
i f d e f HAS ACKNOWLEDGE
e x t e r n boo l acknowledge ;
e n d i f
vo id send (c h a r ∗) ;

/∗ t r a n s c e i v e r . c ∗ /
i f d e f HAS ACKNOWLEDGE
boo l acknowledge = t r u e ;
e n d i f

vo id send (c h a r ∗ msg)
i n i t i a l i z e t r a n s c e i v e r () ;

i f d e f HAS ACKNOWLEDGE
acknowledged = f a l s e ;

e n d i f
f o r n i t e r a t i o n s

send (msg)
i f d e f HAS ACKNOWLEDGE

i f a c k n o w l e d g e r e c e i v e d ()
acknowledged = t r u e ;
r e t u r n ;

e n d i f

Consider that new products are developed which require
different acknowledgement realizations, for example to im-
prove reliability when successive messages are acknowl-
edged. Using Conditional Compilation, each of these would
require the transceiver source code modules to be modified,
possibly corrupting common code which is used by existing
products. For that reason, it is desirable to extract the com-
mon, unchanged code and the variable code which evolves
more often into separate modules. The given implemen-
tation makes it hard to efficiently realize such a separation,
because the variable code is distributed across two modules,
the header file and the implementation file, and in the latter,
it appears as part of an iteration.

Using Frame Technology, the common and variable code
parts are decomposed into separate modules, as shown in
the following pseudocode:

/∗ t r a n s c e i v e r . f rame ∗ /
OUTFILE t r a n s c e i v e r . h
vo id send (c h a r ∗) ;
OUTFILE t r a n s c e i v e r . c
vo id send (c h a r ∗ msg)

i n i t i a l i z e t r a n s c e i v e r ()
f o r n i t e r a t i o n s

send (msg)

/∗ acknowledgement . f rame ∗ /
ADAPT t r a n s c e i v e r . f rame
INSERT BEFORE ’ vo id send (c h a r ∗) ’
e x t e r n boo l acknowledge = t r u e ;

INSERT BEFORE ’ vo id send (c h a r ∗ msg) ’
boo l acknowledged = f a l s e ;
INSERT AFTER ’ i n i t i a l i z e t r a n s c e i v e r () ’
acknowledged = f a l s e ;
INSERT BEFORE ’ send (msg) ’

i f a c k n o w l e d g e r e c e i v e d ()
acknowledged = t r u e ;
r e t u r n ;

An advanced preprocessor, uses either the
transceiver.frame or the acknowledgement.frame file
as input and produces the corresponding .c and .h files,
which can then be used as C compiler input.

4.2. Applicability

Frame Technology should be used

- if certain source code parts within or across modules always
change together, but cannot be easily extracted into a single
module using C/C++ programming language mechanisms

- to manage alternative variabilities independently
- when source code and other textual product line artifacts

should evolve together
- when there should be a global point of modification and con-

figuration of variabilities
- to both highlight variabilities and hide commonalities
- when it makes sense to distinguish between different levels of

context-sensitivity in variable source code

4.3 Consequences

Frame Technology is an advanced variability mechanism
for source code in arbitrary programming languages, and
other textual artifacts. It has the following strengths and
weaknesses:

+ Arbitrary text parts can be managed as variabilities, even syn-
tactically incomplete code such as partial loops or isolated
return statements. The code parts can have arbitrary gran-
ularity, from single variables or functions to entire subsys-
tems. Code parts from several programming languages can
be managed together, as well as non-code artifacts.

+ Variability management at explicit, different levels of context-
sensitivity is facilitated, so that the modules become nearly
decomposable [16]; they are organized in reuse hierarchies
according to their stability over time.

+ There are no effects on resource efficiency.
+ The variable parts are highlighted, and at the same time the

common parts are hidden. The common parts can be modu-
larized completely independent from the variable ones.

+ Commonalities and defaults are used as first-class elements,
instead of variabilities. This makes negative variabilities [6]
(same as-except [3], contraction [13]) as easy to express and
use as positive variabilities (extension). Each default also
reduces the number of separate variable elements by one.

+ Unpredicted changes are supported, because variation points
are open parametersx of variation which can be overridden
in arbitrary ways. This is in contrast to closed parameters,
such as traditional preprocessor macros, which only allow
selecting from a fixed number of predefined options.

+ An exponential growth in the number of modules in an evolv-
ing system is avoided, because adding new alternatives in al-
ternative variabilities or multiple coexisting possibilities only
leads to a linear growth in modules.

- Additional tool support and training is required.
- The entire source code of the reused components must be

available; black-box reuse is not supported.

4.4 Implementation

These issues should be considered when using Frame
Technology as a product line implementation technology
[14, 15, 3]:

- Evolution. Frame hierarchies explicitly separate modules
with different evolution rates. If a frame processor also pro-
vides closed parameters, they can be used to mark several
default versions or deprecated code parts. Existing modules
can easily be made adaptable without modifying their source
code by adding frame annotations (the source code must not
contain annotation text). Adapting these modules facilitates
parallel evolution without inconsistent co-evolution of com-
monalities. If it turns out during evolution that certain frame
parts have higher or lower change frequencies than initially
conceived, this can be easily refactored by moving the part
up or down the frame hierarchy.

- Organization of Parts. The following rules help to de-
cide where to place a code part within a frame hierarchy:
When two code parts have the same evolution frequency,
they should be placed in the same level of the frame hier-
archy. In addition, when these code parts are always reused
together, they should be placed in the same frame. When the
parts can be independently reused, e.g. as alternative vari-
abilities, they belong into sibling frames. And when they do
not have the same change rate, i.e., one part implies a reuse
of the other, but the other can be reused alone, then they be-
long into different levels.

- Selection of Defaults. Frame Technology makes extensive
use of default text. When a common part is framed, and vari-
ation points are defined, a meaningful default code should
also be provided in many cases, rather than leaving the de-
fault code empty. This has the advantage that the template
code provided by the frame becomes more comprehensible
when it is adapted, because the default serves as a best ex-
ample. It can also make the ancestor frames smaller, which is
always a desirable goal. Another observation concerning de-
faults is that the set union of all defaults in a frame does not
always need to result in a meaningful product instance; the
frame may be reused more efficiently if each default alone
does not require extensive overriding.

5. Conclusion

This report gave an overview of a method for reducing
complexity in reusable code, presenting frame technology
as a mechanism which generalizes reuse concepts of most
other mechanisms. Follow-up papers will present method,
scenario and metrics details.

References

[1] C. Alexander. The Nature of Order, Book 2: The Process of
Creating Life. Center for Environmental Structure, 2002.

[2] V. Alves. Implementing Software Product Line Adoption
Strategies. PhD Thesis, Federal Univ. of Pernambuco, 2007.

[3] P. G. Basset. Framing Software Reuse: Lessons From The
Real World. Yourdon Press, 1997.

[4] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. Pulse: A method-
ology to develop software product lines. Proc. SSR 5: 122-
131, 1999.

[5] F. P. Brooks. The Mythical Man-Month (20th Anniversary
Edition). Addison-Wesley, 1995.

[6] J. O. Coplien. Multi-Paradigm Design for C++. Addison-
Wesley, 1998.

[7] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[8] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[9] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse. Ar-
chitecture, Process and Organization for Business Success.
ACM Press, 1997.

[10] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. Refac-
toring a legacy component for reuse in a software product
line: a case study. Journal of Software Maintenance and
Evolution 18(2): 109-132, 2006.

[11] C. Krueger. The 3-tiered methodology: Pragmatic insights
from new generation software product lines. Proc. SPLC 11:
97-106, 2007.

[12] N. Madhavji, J. Fernandez-Ramil, and D. Perry. Software
Evolution and Feedback. Theory and Practice. Wiley &
Sons, 2006.

[13] D. L. Parnas. Designing software for ease of extension and
contraction. IEEE Transactions on Software Engineering,
5(2): 128-138, 1979.

[14] T. Patzke. Mechanisms, processes and metrics for imple-
menting and evolving reusable embedded systems. IESE
Report 021.08/E, 2008.

[15] T. Patzke and D. Muthig. Product line implementation with
frame technology: A case study. IESE Report 018.03/E,
2003.

[16] H. A. Simon. The architecture of complexity. In Simon, H.
A., The Sciences of the Artificial (2nd ed.), MIT Press, 1994.

[17] M. Svahnberg and J. Bosch. A taxonomy of variability re-
alization techniques. Softw., Pract. Exper. 35(8): 705-754,
2005.

[18] N. Wirth. A plea for lean software. IEEE Computer 28(2):
64-68, 1995.

