
Contextual constraints in configuration languages

Dennis Wagelaar
Vrije Universiteit Brussel

System and Software Engineering Lab
Pleinlaan 2, 1050 Brussels, Belgium

dennis.wagelaar@vub.ac.be

1. Introduction

Configuration languages are a very common solution to
manage the variability in software systems. They can take
the form of product models for software product lines [6],
configuration files for software frameworks1, workflows for
program generators2 as well as configuration models that
are built into the software and can be changed at run-
time [3]. Configuration languages can be defined in a va-
riety of ways, ranging from grammars to XML schemas
and meta-models. Often, a configuration language defines a
number of constraints that rule out any inconsistent config-
urations. These constraints can be part of the language def-
inition [4] or they can be defined separately [1]. The scope
of such constraints is typically limited to so-called interac-
tion constraints, which describe what configuration options
can be combined with each other. This limit is caused by the
vocabulary with which the constraints have to be expressed.
This vocabulary is of course only scoped to express the pos-
sible configurations.

Another kind of constraint that can apply to configura-
tions, is a contextual constraint. Contextual constraints refer
to the context in which a software system must work. The
relationship between context and programming is described
in Context-Oriented Programming [5]. We believe that, in
order to describe constraints based on context for a configu-
ration language, there must be an explicit vocabulary of this
context. These contextual constraints can then be bound to
the configuration language by relating them to the configu-
ration language definition (grammar, schema, meta-model,
. . . ).

Ontologies have proven to be a suitable format for
describing the concepts that can occur in the con-
text [11][8][7]. The standard ontology language OWL [10]
provides a way to reason about ontologies with descrip-
tion logic using the OWL DL variant. We have shown in

1 http://www.hibernate.org/hib_docs/reference/
en/html/session-configuration.html

2 http://www.openarhictectureware.org/

previous work that it is possible to express platform con-
cepts and platform dependency constraints in OWL
DL [14], where platform represents a part of the con-
text for a software system. We believe that it is possible
to generalise this approach to context and context con-
straints.

In the rest of this paper, we discuss briefly how con-
text and context constraints can be expressed in OWL DL.
We then illustrate how context constraints can be integrated
with a configuration language. Finally, we conclude this pa-
per with a summary.

2. Using OWL DL for context

In order to express context constraints, we define an ex-
plicit ontology of the context concepts we want to reason
about. This ontology is used as a basis to express the cur-
rent context as well as context constraints. Because the cur-
rent context and the context constraints use the same con-
text ontology, an automatic inference engine can determine
which context constraints are satisfied by the context. We
represent context constraints in OWL as classes. As an ex-
ample of context and context constraints, we will use plat-
forms and platform dependency constraints, respectively.
Consider, for example, the “JavaAWTPlatform” platform
dependency constraint shown in Fig. 1.

Platform

JavaAWTPlatform

isa = necessary

≡ ∃ providesSoftware JavaAWTLibrary = necessary-and-sufficient

Figure 1. Example platform dependency

“JavaAWTPlatform” is represented as an OWL class
with a necessary constraint as well as a necessary-and-
sufficient constraint. Whereas it is necessary that each

http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html
http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html
http://www.openarhictectureware.org/


“JavaAWTPlatform” is a “Platform”, being a “Plat-
form” is not sufficient for also being a “JavaAWTPlat-
form”. Providing the “JavaAWTLibrary” software, how-
ever, is necessary-and-sufficient for being a “JavaAWT-
Platform”. The “JavaAWTPlatform” constraint can be
checked against OWL instances that represent platform in-
stances. Each OWL instance – or individual – that satisfies
the conditions of the “JavaAWTPlatform” class can be con-
sidered as an instance of that class. Each platform instance
representation that is an instance of a platform depen-
dency constraint, satisfies that platform dependency con-
straint.

Our platform ontology is not monolithic, but is divided
into a network of OWL files. The central part of the plat-
form ontology is made up of several “vocabulary ontology”
files, where the word “vocabulary” refers to the fact that
the domain concepts are all introduced in these ontologies.
These describe the general concept of Platform and its parts.
Platform dependency constraints are expressed in terms of
this vocabulary ontology, while they are stored in a sepa-
rate OWL file. This separate OWL file is not considered to
be part of the vocabulary ontology, since it expresses only
platform dependency constraints rather than platform do-
main concepts.

Platform instances are also described in a separate OWL
file and refer to the same platform vocabulary ontology as
the platform dependency constraints. An automatic DL rea-
soner can be used to verify whether a platform instance
satisfies a platform dependency constraint. In addition, DL
reasoners can infer a class hierarchy. As we represent con-
text constraints with OWL classes, we can determine which
platform dependency constraints are more specific than oth-
ers and hence form a closer match to a platform instance.
Translated to context, this allows us to determine the con-
figuration choices that are more specific to the current con-
text.

3. Context constraints in configuration lan-
guages

Context constraints can be integrated with a configura-
tion language by binding them to the language definition.
The elements that make up a configuration language defi-
nition represent the available configuration options. In case
of a grammar, each terminal and non-terminal represent a
configuration choice. In case of an XML schema, each el-
ement represents a configuration choice. In meta-models,
the meta-classes represent the configuration choices. We
can annotate these elements of the language definition with
the corresponding context constraints. Fig. 2 shows how the
meta-model of a configuration language for a code genera-
tor framework can be annotated with context constraints.

The meta-model is defined using the Eclipse Modeling
Framework (EMF) [2]. The EMF meta-modelling language
(Ecore) allows for annotations to be added to each meta-
element. We have added annotations to each meta-class with
a context constraint. Each annotation points to an OWL de-
scription of the context constraint. These context constraints
can now be used to assist in the configuration process:

• We can adapt the configurator tool to allow for correct
configuration choices only, as well as sort the available
configuration options most-specific-first.

• We can automatically select the best match to the con-
text from a number of pre-defined configurations.

• We can (semi-)automatically generate configurations
by using the context constraint class hierarchy and
context constraint satisfaction checking.

We use the OWL class hierarchy of the context con-
straints to determine which configuration, or configuration
choice, is more or less specific to the context. To achieve
this, a translation must be made from the OWL class hier-
archy to an ordered list of configurations, or configuration
choices, respectively. A detailed description of this process
can be found in [13], section 4.6.1.

4. Discussion

The scope of regular constraints on a configuration lan-
guage is naturally limited to the vocabulary of that config-
uration language: the constraints are expressed in terms of
the vocabulary that is available. We have identified another
kind of constraint that relates to the context of the software
system to be configured, which we call context – or contex-
tual – constraints.

We have chosen to represent context and context con-
straints in OWL DL, which is a standard ontology language.
Ontologies have proven to be well-suited for the description
of context. Moreover, the fact that the description of con-
text constraints already requires additional vocabulary, jus-
tifies the use of a separate formalism. We have shown how
our separate description of context constraints can be inte-
grated with the meta-model of a configuration language. We
have indicated that this is also possible for other language
definition formalisms, such as grammars and schemas. The
choice of only annotating the meta-classes in a meta-model
– or (non-)terminals in a grammar, or elements in an XML
schema – limits the granularity of context constraints. Every
instance of that meta-class must introduce the same context
constraints, regardless of where they occur in the configu-
ration model. Context constraints on attributes are also not
possible, as attributes in a meta-model always have a prim-
itive type: it makes no sense to define context constraints
on primitive types. As a result, the configuration language



Figure 2. Annotated configuration language for code generator framework

must be designed to allow for annotation with context con-
straints.

OWL DL performs well in describing provides/requires-
style constraints, such as context constraints. The automatic
hierarchy classification in OWL DL has proven useful to
relate context constraints to each other in terms of speci-
ficness. From all the satisfied context constraints, the more
specific constraint is a closer match the context. An im-
portant limitation of our method of defining context con-
straints is the way we chose to combine them: we do a sep-
arate satisfaction check for each constraint. A satisfaction
check only involves checking that there are instances (con-
text elements) for a context constraint. Sometimes, we want
multiple context constraints to be satisfied by the same con-
text element. For example, we require a Java runtime with
AWT and we require a Java runtime with the Java 2 Collec-
tions API. We generally don’t want two separate Java VMs
to each satisfy one of the constraints. To solve this prob-
lem, the context constraints must refer to each other: “a plat-
form that provides the Java 2 Collections framework and is
also a JavaAWTPlatform.” However, we don’t know which
context constraints apply at the time they are defined: only
when doing the actual configuring, can we know the appli-
cable context constraints. This means that we cannot define
this kind of constraint in OWL DL directly.

Automatic reasoning on OWL DL ontologies is no triv-
ial task: determining standard OWL DL, which corresponds
to the SHOIN (D) description logic, satisfiability has a
complexity of NEXPTIME [12]. When limiting the usage of
OWL DL to SHIF(D), the complexity is reduced to EX-
PTIME [12]. PSPACE complexity is only achieved when re-
moving transitive roles (part of S), inverse roles (I) and
role hierarchies (H), resulting in theALCF(D) description
logic [12]. Current DL reasoner implementations can lever-
age limited usage of OWL DL at least down to SHF(D),
which lacks inverse roles [9]. On the practical side, recent
experiments with a SHF(D) ontology have shown consis-

tent reasoning performance of ¡ 1 second when reasoning
about ca. 1000 OWL classes (context vocabulary and con-
straints), of which about half is completely defined using
an equivalence relationship, against ca. 50 OWL individu-
als (the context). This performance is achieved on a laptop
with a 2 GHz Intel Core2 Duo processor. The whole tool
setup, including reasoner, can work within 32 MB of RAM
for this scenario. This means that we can reasonably expect
OWL DL reasoning to scale sufficiently for use on today’s
desktop- and laptop-class computers and tomorrow’s mo-
bile devices. There are scenarios in which run-time adapta-
tion to context with OWL DL context descriptions is fea-
sible. A straightforward example is a software system that
will deploy the most appropriate user interface to the end
user device that presents itself to the system3.

References

[1] D. Batory, D. Benavides, and A. Ruiz-Cortéz. Automated
analysis of feature models: Challenges ahead. Communica-
tions of the ACM, 49(12):45–47, Dec. 2006.

[2] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose. Eclipse Modeling Framework. The Eclipse Series.
Addison Wesley Professional, Aug. 2003.

[3] D. Deridder. A Concept-Centric Environment for Software
Evolution in an Agile Context. PhD thesis, Vrije Universiteit
Brussel, Brussels, Belgium, 2006.

[4] A. v. Deursen and P. Klint. Domain-specific language design
requires feature descriptions. Journal of Computing and In-
formation Technology, 10(1):1–17, 2002.

[5] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented programming. Journal of Object Technology,
7(3):125–151, Mar. 2008.

[6] C. W. Krueger. New methods in software product line prac-
tice. Communications of the ACM, 49(12):37–40, Dec. 2006.

3 http://ssel.vub.ac.be/platformkit/
instantmessenger/

http://ssel.vub.ac.be/platformkit/instantmessenger/
http://ssel.vub.ac.be/platformkit/instantmessenger/


[7] R. Lewis and J. M. C. Fonseca. Delivery Context Ontol-
ogy. World Wide Web Consortium, Apr. 2008. W3C Work-
ing Draft 15 April 2008, [Online] http://www.w3.org/
TR/dcontology/.

[8] D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges,
P. Rigole, T. Clerckx, Y. Berbers, K. Coninx, V. Jonckers, and
K. De Bosschere. Towards an extensible context ontology for
ambient intelligence. In P. Markopoulos, B. Eggen, E. H. L.
Aarts, and J. L. Crowley, editors, Proceedings of the Sec-
ond European Symposium on Ambient Intelligence (EUSAI
2004), Eindhoven, The Netherlands, volume 3295 of Lec-
ture Notes in Computer Science, pages 148–159. Springer-
Verlag, Nov. 2004.

[9] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz.
Pellet: A practical OWL-DL reasoner. Journal of Web Se-
mantics, 5(2):51–53, June 2007.

[10] M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web
Ontology Language Guide. World Wide Web Consortium,
Feb. 2004. W3C Recommendation 10 February 2004, [On-
line] http://www.w3.org/TR/owl-guide/.

[11] T. Strang, C. Linnhoff-Popien, and K. Frank. CoOL: A con-
text ontology language to enable contextual interoperabil-
ity. In J.-B. Stefani, I. Dameure, and D. Hagimont, edi-
tors, Proceedings of 4th IFIP WG 6.1 International Confer-
ence on Distributed Applications and Interoperable Systems
(DAIS2003), volume 2893 of Lecture Notes in Computer Sci-
ence, pages 236–247. Springer-Verlag, Nov. 2003.

[12] S. Tobies. Complexity Results and Practical Algorithms for
Logics in Knowledge Representation. PhD thesis, RWTH
Aachen, Aachen, Germany, May 2001.

[13] D. Wagelaar. Platform Ontologies for the Model-Driven Ar-
chitecture. PhD thesis, Vrije Universiteit Brussel, Brussels,
Belgium, Apr. 2008.

[14] D. Wagelaar and R. Van Der Straeten. Platform ontologies
for the model-driven architecture. European Journal of In-
formation Systems, 16(4):362–373, Aug. 2007.

http://www.w3.org/TR/dcontology/
http://www.w3.org/TR/dcontology/
http://www.w3.org/TR/owl-guide/

	1 Introduction
	2 Using OWL DL for context
	3 Context constraints in configuration languages
	4 Discussion

