
The future belongs to well-designed low-level
general-purpose languages, and a handful of DSLs

Every feature in modern programming languages can be viewed as a mechanism to
express commonality and variation. A quick look at popular languages shows that they
can express only a small number of configurations of commonality and variation
based on structure, type, function, and a few other primitive concepts. To make these
concepts less primitive and to extend them into concepts of the domain discourse is to
build a domain-specific language.

One can argue that history has demonstrated the primitive concepts to be adequate to
express design, though they can be helped with some syntactic aspartame that is more
an issue of good taste in language design than in anything technical or theoretically
based. To go the other direction and to express commonality and variation in domain-
specific languages has a poor track record when the language inventory grows beyond
shared notions of the broad culture (as one finds in DSLs such as yacc, lex, and bison).
The problems of wholesale DSLs are many, as born out by a decade of experience at
Bell Laboratories and other companies which have tried these techniques on a large
scale:

 - while one can build a language translator in an afternoon, it takes years to design a
good language
 - the translator alone isn't enough: you need debuggers, browsers, source analyzers,
re-factoring tools, configuration management tools, and a host of other tools that
aren't so easy to build, and the cost/benefit analysis starts to look less attractive
 - a culture based on more than two or three languages provides a shocking learning
curve to new employees. incurring high costs and errors
 - the higher-level the expression, the more brittle a language is with respect to change
-- which is why low-level languages survive and very high-level languages die out

The future belongs to well-designed low-level general-purpose languages, and a
handful of DSLs

Gertrud & Cope, Software Architecture & Agile Consultant

James Coplien

