
Traversal code is ubiquituous in software, polluting the real intent of programs with
accidental details of the current structure in which the intent is expressed.

We present a novel model, called Functional Adaptive Programming (AP-F), for
processing objects that supports improved software variability. The software variability
is improved by using three approaches: (1) a novel separation of generic concerns (i.e.,
a functional model for processing objects), (2) constraint-controlled automatic
adaptation, and (3) programmer-controlled, crosscutting adaptation using two aspect
mechanisms (multi-methods and strategies). Regarding (1), object processing is broken
down into three major concerns as in Adaptive Programming (AP): ClassGraph,
WhereToGo, WhatToDo. The ClassGraph defines the structural relationships between
the classes. WhereToGo uses a high-level traversal language a la AP. WhatToDo is
different than in AP and has three subconcerns: Down, Leaf, Up. WhatToDo uses
functional-style advice on a general traversal with strategies, inspired by, but different
from a visitor. While a visitor uses the traditional Law of Demeter: "Talk only to your
friends", WhatToDo uses the dual: "Listen only to your friends". This creates a flow
of information through the traversal, separated into what information flows Down, is
created at Leafs and flows Up.

Regarding (2), a type checker checks constraints that the multi-methods must satisfy,
using strategies to constrain applicable ClassGraphs. Regarding (3), multi-methods and
strategies are used to adapt generic WhatToDos in a powerful way: a small change to
the program may have a broad effect cutting across the system being built.

A system that supports software variability should have two properties: easy creation
of class-graph-generic (or datatype-generic) programs and powerful adaptation and
composition capabilities to specialize generic programs. AP-F has both, with
advantages over other class-graph-generic programming approaches such as SYB
(Scrap Your Boilerplate), Strategic Programming, Polytypic Programming and
Generalized Folds. A key feature of AP-F is that it smoothly integrates high-level
traversal control with the other desirable features leading to a superior way to abstract
a large variety of traversals. This simplifies programs because all traversal-related calls
become implicit and they are no longer polluting the real intent of programs.

Examples will be shown in two implementations of AP-F: A Java version, called
DemeterF and a Scheme version, called apf-lib.

Joint work with Bryan Chadwick, Ahmed Abdelmeged, and Therapon Skotiniotis.

CCIS/PRL, Northeastern University, Boston, Massachusetts, USA

Karl Lieberherr

Better Software Variability Through Better
Abstraction of Traversals

