Software Variability: a Programmers’ Perspective

Better Software Variability Through Better
Abstraction of Traversals
Karl Lieberherr

CCIS/PRL, Northeastern University, Boston, Massachusetts, USA

Traversal code is ubiquituous in software, polluting the real intent of programs with
accidental details of the current structure in which the intent is expressed.

We present a novel model, called Functional Adaptive Programming (AP-F), for
processing objects that supports improved software variability. The software variability
is improved by using three approaches: (1) a novel separation of generic concerns (i.e.,
a functional model for processing objects), (2) constraint-controlled automatic
adaptation, and (3) programmer-controlled, crosscutting adaptation using two aspect
mechanisms (multi-methods and strategies). Regarding (1), object processing is broken
down into three major concerns as in Adaptive Programming (AP): ClassGraph,
WhereToGo, WhatToDo. The ClassGraph defines the structural relationships between
the classes. WhereToGo uses a high-level traversal language a la AP. WhatToDo is
different than in AP and has three subconcerns: Down, Leaf, Up. WhatToDo uses
functional-style advice on a general traversal with strategies, inspired by, but different
from a visitor. While a visitor uses the traditional Law of Demeter: "Talk only to yout
friends", WhatToDo uses the dual: "Listen only to your friends". This creates a flow
of information through the traversal, separated into what information flows Down, is
created at Leafs and flows Up.

Regarding (2), a type checker checks constraints that the multi-methods must satisfy,
using strategies to constrain applicable ClassGraphs. Regarding (3), multi-methods and
strategies are used to adapt generic WhatToDos in a powerful way: a small change to
the program may have a broad effect cutting across the system being built.

A system that supports software variability should have two properties: easy creation
of class-graph-generic (or datatype-generic) programs and powerful adaptation and
composition capabilities to specialize generic programs. AP-F has both, with
advantages over other class-graph-generic programming approaches such as SYB
(Scrap Your Boilerplate), Strategic Programming, Polytypic Programming and
Generalized Folds. A key feature of AP-F is that it smoothly integrates high-level
traversal control with the other desirable features leading to a superior way to abstract
a large variety of traversals. This simplifies programs because all traversal-related calls
become implicit and they are no longer polluting the real intent of programs.

Examples will be shown in two implementations of AP-F: A Java version, called
DemeterF and a Scheme version, called apf-lib.

Joint work with Bryan Chadwick, Ahmed Abdelmeged, and Therapon Skotiniotis.



