Vrije
Universiteit
Brussel

¥

Software variations by means of
first-class change objects

Peter Ebraert pebraert@vub.ac.be
Leonel Merino leonelmerino@gmail.com
Theo D'Hondt tjidhondt@vub.ac.be

Agenda

Software Variability
Requirements

Related work
Discussion

Our FOP model
Demo

Future work
Conclusions

Software Variability

[1 FOText is a word processor that requires to be
improved with a functionality to compress the
files it produce. zwa SE

Sometimes the modifications that are introduce by a feature impact in entities specified by other features. Just like

D FO I eXt h a S a feature that implements a crosscutting concern. This leads in dependencies between features. A composition

between features is valid only when all dependent features are in the composition. Since a feature-oriented approach
allows to produce variations by composing different sets of features, to implement this kind of features is an issue.

tW O Va ri a ti O n S D One unpleasant way to solve this, is by creating a specific version of the feature for combining it with a specific set
n

of other features and thus produce a valid composed software. This leads into many version of the same feature that

require to be maintained. We would like to be provided with " File ¥ ey Js to write the feature once and the
technique would be able to deploy the feature in a specific! Edit » open feature that are participating in the
composition. Allowing the reuse of the feature. Sometimes| Print * save are introduce by a feature impact

in entities specified by other features. Just like a feature th: Hellp Saveas cutting concern. This leads in

. FOTe Xt V I ewe r dependencies between features. A composition between features is Quit ,—len all dependent features are in the

composition. Since a feature-oriented approach allows to produce variations by composing different sets of features,
. FOTe Xt fu I I to implement this kind of features is an issue. One unpleasant way to solve this, is by creating a specific version of

the feature for combining it with a specific set of other features and thus produce a valid composed software. This
leads into many version of the same feature that require to be maintained. We would like to be provided with a
technique that allows to write the feature once and the technique would be able to deploy the feature in a specific
way depending on the feature that are participating in the composition. Allowing the reuse of the feature.

Approach

Ad-hoc: add the code needed directly

X

into the application.
[0 Solution tightly coupled

Feature-oriented programming:
create a feature that adds this
functionality to the FOText base

program.
[0 Features can be reused

FOP requirements

We identify the following requirements:

[0 The compress feature requires adding new

statements and deleting existing ones in the
open and save functionalities.

0 Although we have two variations of FOText

we would like to create the compress feature
just once and reuse it.

We pursue an approach that fulfills these criteria

AHEAD addresses FOP by providing: step-

AHEAD *

wise development, generative programming

and algebras.

class EditorController {

}

C

Menu menu() {
return new Array(‘new’, ‘quit);

}

void new(){window title = “;}

lass Editor{
String applicationName = *;
void execute(){

window = new Window(new

refines class EditorController {
String theFileName
Menu menu() {
return new Array(‘new’, ‘open’, ‘quit’);
}
void new() {
theFileName = null;
super.new();
}
void open() {

P

EditorController); theFileName = new Dialog(“Enter the
} filename™);
} window title = theFileName;
window .body = open(theFileName);
¥
}
(a) Base (c)Open

* D. Batory, J. Sarvela, and A. Rauschmayer. Scaling stepwise refine-

ment, 2003.

Lifting functions *

This model allows flexible composition of
objects from a set of features.

= &
Lifting functions

resolve the dF_1,F_24F_1,F_3 }F_2,F_3 }F_2,F alF1_F 4
Interactions
between features.

* Christian Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. Lecture Notes in Computer Science, 1241:419{434, 1997.

Discussion

AHEAD Lifting FeatureC++ |Mixin-layers
Functions
Operations |Addition and [Addition Additions and |Additions and
allowed modification * modifications |modifications
Granularity |Method, field [Statement Method, field |Statement
and statement and
& statement *
Feature No No No No
reuse
Dependency |Implicit Implicit Implicit Implicit

management

A change based solution for FOP

[

Change: any operation produced by the
programmer in the code.

Feature as a set of first-class change objects.

Changes are captured from the IDE using the
ChEOPS tool.

Explicitly stored dependencies between changes

We aim at feature reuse

FOP model

class Buffer{

1 int buf = 0;

int back = 0;

void get(){
logit();
return buf;

b

int set(int x){
logit();
back = buf;
buf = x;

void restore(){

logit(),
buf = back;
b
void logit(){
print(buf);
print(back);
¥

b

Demo

Future work

Develop a characterization for flexible
features

Not only allowing addition and deletion but

modifications would decrease the number
of changes.

In ChEOPS the changes cannot be exported

or applied*

Conclusion

Programming languages do not
provide enough tools to do FOP.

We propose:

B A conceptual model where features are
described by changes and dependencies
are explicit. Moreover, we introduce
flexible features.

B Tool support to compose features.

Thanks |

