
Software variations by means of
first-class change objects

Peter Ebraert pebraert@vub.ac.be
Leonel Merino leonelmerino@gmail.com
Theo D’Hondt tjdhondt@vub.ac.be

Agenda

 Software Variability
 Requirements
 Related work
 Discussion
 Our FOP model
 Demo
 Future work
 Conclusions

Software Variability
  FOText is a word processor that requires to be

improved with a functionality to compress the
files it produce.

  FOText has
 two variations:

  FOText viewer
  FOText full

Approach

 Ad-hoc: add the code needed directly
into the application.

 Solution tightly coupled

 Feature-oriented programming:
create a feature that adds this
functionality to the FOText base
program.

  Features can be reused

FOP requirements

We identify the following requirements:

 The compress feature requires adding new
statements and deleting existing ones in the
open and save functionalities.

 Although we have two variations of FOText
we would like to create the compress feature
just once and reuse it.

We pursue an approach that fulfills these criteria

Related work AHEAD *
  AHEAD addresses FOP by providing: step-

wise development, generative programming
and algebras.

* D. Batory, J. Sarvela, and A. Rauschmayer. Scaling stepwise refine-
ment, 2003.

Related work Lifting functions *
  This model allows flexible composition of

objects from a set of features.

  Lifting functions
resolve the
interactions
between features.

* Christian Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. Lecture Notes in Computer Science, 1241:419{434, 1997.

Discussion
AHEAD Lifting

Functions
FeatureC++ Mixin-layers

Operations
allowed

Addition and
modification *

Addition Additions and
modifications

Additions and
modifications

Granularity Method, field
and statement
*

Statement Method, field
and
statement *

Statement

Feature
reuse

No No No No

Dependency
management

Implicit Implicit Implicit Implicit

A change based solution for FOP

  Change: any operation produced by the
programmer in the code.

  Feature as a set of first-class change objects.

  Changes are captured from the IDE using the
ChEOPS tool.

  Explicitly stored dependencies between changes

  We aim at feature reuse

 class Buffer{
 int buf = 0;

 void get(){

 return buf;
 }
 int set(int x){

 buf = x;
 }

 }

B.1
B.1.1

B.1.2

B.1.1.1

B.1.3

B.1.3.1

.

R.1

R.1.1

R.2

R.1.2

L.1.3

L.1.4

L.1.5

L.1
L.1.1
L.1.2

 logit();

 logit();

 logit();

 void logit(){
 print(buf);
 print(back);
 }

 int back = 0;

 back = buf;

 void restore(){

 buf = back;
 }

FOP model

 L.1

 L.1.1 L.1.2 L.1.3 L.1.4 L.1.5

Logging

B.1.1.1

 B.1

 B.1.1 B.1.2 B.1.3

B.1.3.1

 Base

 R.1 R.2

 R.1.1 R.2.1

Restore

Demo

Future work

  Develop a characterization for flexible
features

  Not only allowing addition and deletion but
modifications would decrease the number
of changes.

  In ChEOPS the changes cannot be exported
or applied*

Conclusion

 Programming languages do not
provide enough tools to do FOP.

 We propose:

  A conceptual model where features are
described by changes and dependencies
are explicit. Moreover, we introduce
flexible features.

  Tool support to compose features.

Thanks !

Software variations by means of first-
class change objects

leonelmerino @ gmail.com

