
Multi-Threaded	Application	Performance	Analysis	
	

	
Running	Multi-threaded	Benchmarks	on	Multicore	Hardware	
1. You	will	re-run	the	multi-threaded	DaCapo	benchmarks	on	Jikes	again,	but	

this	time	you	will	vary	the	number	of	application	threads.		Use	the	same	
Jikes	setup	as	with	project	3.		But	this	time,	download	the	new	running	
script	from	the	website	(runJikesDaCapo_varyAppThreads.sh),	which	will	
allow	you	to	vary	the	number	of	application	threads	of	the	benchmarks	
(four	multi-threaded	benchmarks	are	specified	in	the	script).		Notice	that	
the	parameters	that	you	have	to	pass	to	the	script	have	changed,	and	are	
now:	
		<BENCHMARK> <COLLECTOR> <HEAP_MULTIPLIER> <NUM_APP_THREADS> 

<TIMING_ITERATION> 
 
You	have	to	specify	the	benchmark	(dacapo	for	all	4	benchmarks),	collector	
(you	can	pick	GenImmix),	heap	multiplier	(2	times	the	minimum	heap	size	
is	fine),	then	the	number	of	application	threads	you	want	to	use,	then	the	
timing	iteration	(2	is	again	fine	because	we	are	using	replay	compilation).		
Run	the	multi-threaded	applications	with	1,	2,	4,	and	8	application	threads.		
[If	your	machine	has	only	2	cores,	you	can	skip	the	8	application	threads	
data	point.]		Look	at	the	execution	times	as	the	number	of	application	
threads	increases.		Does	it	always	go	down?		If	no,	why	not?		Are	the	
benchmarks	in	general	scalable	as	you	increase	the	number	of	threads?	

2. Based	on	Amdahl’s	Law	[Speedup	=	1	/	(f/n	+	(1-f))	],	calculate	for	each	of	
the	multi-threaded	benchmarks	what	f	must	be	when	going	from	1	to	4	
application	threads,	and	from	1	to	8	(if	applicable).		Do	you	conclude	that	a	
large	portion	of	these	benchmarks	is	parallelized?			
	

	
Visualizing	Multi-threaded	Benchmarks	
3. Analyze	the	provided	bottle	graphs	(download	the	1	page	from	the	

website)	for	only	the	multi-threaded	applications.		The	multi-threaded	
applications	were	run	with	4	application	threads	and	2	garbage	collection	
threads,	using	the	GenImmix	collector.		How	does	this	set	of	benchmarks	do	
in	regards	to	parallelism?		In	other	words,	does	each	of	the	applications	
scale	well	to	4	application	threads?		Do	the	bottle	graphs	reflect	what	you	
saw	in	the	benchmark	runs	that	you	did	in	step	1?	

4. Check	out	the	pmd	benchmark	in	particular.		See	the	figure	below	in	this	
document	that	comes	from	the	bottle	graph	paper	(Figure	11),	which	
shows	the	bottle	graphs	for	varying	numbers	of	application	threads	for	
pmd.		What	can	you	conclude	about	pmd’s	scalability?		Do	you	know	what	
the	bottleneck	is	or	how	to	fix	it	based	on	just	analyzing	the	bottle	graph?	

5. Check	out	the	figure	below	in	this	document	that	comes	from	the	bottle	
graph	paper	and	compares	the	scaling	of	the	GenImmix	garbage	collector	
when	the	number	of	threads	is	varied,	keeping	the	application	constant	
(Figure	3).		What	can	you	conclude	about	Jikes’	GenImmix	collector’s	
scalability?		Do	you	know	how	to	improve	it	from	this	picture?	



6. Now	look	at	the	speedup	stacks	paper	that	you	downloaded	from	the	
course	webpage	(please	do	not	give	this	paper	out	to	others).		Look	
particularly	at	Figure	3	(which	shows	speedup	stacks	for	4	DaCapo	
benchmarks	when	running	with	the	GenImmix	collector	at	2x	the	minimum	
heap	size)	and	Figure	4	(which	shows	supporting	performance	counter	
data).		You	can	compare	what	the	speedup	stacks	of	these	4	benchmarks	
show	about	scalability	with	your	experimental	runs	in	step	1,	and	with	the	
same	benchmarks’	bottle	graphs	from	step	3.	Do	you	see	the	same	
scalability	problems	with	these	benchmarks	as	in	the	bottle	graphs?		Or	do	
you	see	different	bottlenecks	illuminated?			Do	speedup	stacks	give	you	
enough	information	to	eliminate	these	bottlenecks	or	know	how	to	fix	
them?		I	want	you	to	compare	and	contrast	these	2	visualization	tools	and	
report	on	their	advantages	and	disadvantages.	

	
	
Multi-threaded	Analysis	Tool	
7. Choose	one	of	the	following	performance	analysis	tools	below	to	

explore.			I	would	like	each	of	you	to	pick	a	different	one,	so	please	email	
me	when	you’ve	made	your	choice	and	I	will	tell	other	students	that	they	
cannot	pick	that	tool.		These	tools	all	should	work	on	multi-threaded	
applications,	so	try	to	download	the	tool	(a	trial	version	if	it	was	developed	
by	a	company),	and	run	it,	if	possible	(meaning	don’t	spend	a	whole	day	
trying	to	get	it	to	work	if	it’s	not	working).		Report	back	on	what	the	tool	is	
good	for	and	what	is	it	bad	at.		Can	the	tool	you	chose	help	you	find	and	
solve	scalability	issues	such	as	the	ones	you	found	above?		Is	there	
something	else	you	would	have	liked	a	multi-threaded	performance	
analysis	tool	to	provide	you,	as	a	developer	and	debugger,	to	be	more	
useful	to	help	improve	scalability?	

• VTune	(https://software.intel.com/en-us/intel-vtune-amplifier-xe)	
• VisualVM(http://visualvm.java.net/gettingstarted.html)	
• WAIT(https://wait.ibm.com/)	
• Jconsole	

(http://docs.oracle.com/javase/8/docs/technotes/guides/management/
jconsole.html)	

• Jprofiler	(http://www.ej-
technologies.com/products/jprofiler/overview.html)	

• YourKit	(https://www.yourkit.com/java/profiler/)	
• Valgrind	(http://www.valgrind.org/)	
• Choose	your	own…	

	
	

Additional	Information	
If	you	want	to	check	out	what	the	bottle	graph	paper’s	authors	concluded	about	
the	GenImmix	collector’s	scalability,	and	what	was	going	on	with	pmd,	check	out	
the	full	paper	(only	after	you’ve	written	your	report):	
http://soft.vub.ac.be/~jsartor/researchDocs/opsla100b-dubois.pdf	
	



	
	
	


