
Analyzing the Scalability of Managed Language
Applications with Speedup Stacks

Abstract—Understanding the reasons why multi-threaded ap-
plications do not achieve perfect scaling on modern multicore
hardware is challenging. Furthermore, more and more modern
programs are written in managed languages, which have extra
service threads to perform, for example, memory management,
which can also retard scalability and further complicate the
analysis. In this paper, we present speedup stacks, a visualiza-
tion tool to analyze multi-threaded managed language program
performance delimiters on existing hardware. Speedup stacks
are comprehensive bar graphs that break down an application’s
execution to explain the main causes of sublinear speedup, i.e.,
when some threads are not allowing the application to progress,
and thus increasing the execution time.

We not only expand speedup stacks to analyze how the
managed language’s service threads affect overall scalability, but
also implement speedup stacks while running on native hardware.
We monitor the application and service threads’ scheduling be-
havior using light-weight OS kernel modules, incurring under 1%
overhead running unmodified Java benchmarks. We analyze the
scalability limitations of these benchmarks and the impact of us-
ing both a stop-the-world and a concurrent garbage collector with
speedup stacks. Our visualization tool facilitates the identification
of scalability bottlenecks both between application threads and
of service threads, pointing developers to whether optimization
should be focused in the language runtime or the application.
Speedup stacks provide better program understanding for both
program and system designers, which can help optimize multicore
processor performance.

I. INTRODUCTION

Analyzing the performance of multi-threaded applications
on today’s multicore hardware is challenging. A software
developer needs analysis tools to identify the performance
scaling bottlenecks; likewise, computer architects need analy-
sis tools to understand the behavioral characteristics of existing
and future workloads to design and optimize future computing
systems. While processors have advanced in terms of pro-
viding performance counters and other tools to help analyze
performance, the reasons scalability is limited are hard to
tease apart. In particular, the interaction between threads in
multi-threaded applications is complex: some threads perform
sequentially for a period of time, others are stalled with no
work to do, synchronization behavior makes some threads
wait on locks or barriers, and threads can interfere with each
other in their use of shared on- and off-chip resources, such as
the memory subsystem. Many papers have demonstrated the
inability of multi-threaded programs to scale well, but studying
the root causes of scalability bottlenecks is challenging. Ana-
lyzing managed languages is even more challenging, because
in addition to the application threads, there are many service
threads. Because the application runs on top of a managed run-

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

S
pe

ed
up

 

Garbage 
Collector 
Sequential Parts 

Thread 
Imbalance 
Synchronization 

Hardware 
Interference 
Measured 

Fig. 1. A speedup stack for the lusearch DaCapo benchmark with 4
application threads and one garbage collection thread running on Jikes RVM.

time environment, additional threads exist to perform dynamic
compilation, profiling, and automatic memory management.
Teasing apart their effect on the application’s performance
is also an important part of understanding the scalability of
modern multi-threaded programs.

In this work we provide a visualization tool, speedup
stacks, to analyze multi-threaded managed language applica-
tion scalability on native multicore hardware. Speedup stacks
comprehensively characterize managed language application
performance, including service threads’ impact on scalability,
on existing hardware. Speedup stacks give insight to program-
mers on why their multi-threaded program’s speedup, over
its single-threaded version, is not actually proportional to the
number of cores or threads. It breaks up the ideal speedup
of the entire application into the actual speedup achieved and
the contributions of various performance delimiters, including
garbage collection, sequential code, thread imbalance, syn-
chronization and hardware interference.

Speedup stacks are a powerful tool to guide optimization.
Figure 1 shows an example speedup stack for a 4-threaded
application, lusearch. This speedup stack shows that the
achieved (or measured) speedup versus single-threaded execu-
tion is only 2 (the bottom box). The components that inhibit
scalability the most, in relation to an ideal speedup of 4, are
garbage collection and hardware interference (shared cache,
bus, main memory, etc.) because their respective components
are the largest among the performance delimiters. The main
thread, which performs setup through sequential code, also
limits scalability. Synchronization has a larger impact on

1



speedup than thread imbalance. Speedup stacks show the
impact of speedup delimiters on the program as a whole,
pointing developers to which bottlenecks affect scalability the
most. In this example, we would recommend running with
more than one collector thread because running with one GC
thread is shown not to scale well, which would likely improve
the measured speedup. Because this benchmark also has a
large hardware interference portion, the programmer might
look closely at how threads are sharing data.

While previous work [1] quantified scalability deficiencies
and their relative contributions to reduced application speedup,
it required hardware modifications and did not take into
account managed language service threads. We extend that
work here to include service threads as scalability delimiters,
and to use light-weight OS modules to compute speedup stacks
at negligible overhead on existing multicore hardware. We
integrate both the automatic memory management (or garbage
collection) and the main initialization thread, which affect
execution time and scalability, into our speedup stacks for a
more fine-grained and accurate performance characterization
of managed programs. This visualization tool guides pro-
grammers to the component(s) that is/are limiting scalability,
whether the problem is in the language runtime or the appli-
cation, which when fixed will boost application performance.

To illustrate the practical use of speedups stacks, we present
an analysis of multi-threaded Java benchmarks with both a
stop-the-world and a concurrent garbage collector on Jikes
Research Virtual Machine (RVM) [2]. Our analysis reveals
that the concurrent collector limits scalability more than a
stop-the-world collector using a small heap size, but has better
scalability with a larger, less-constrained heap size.

The overarching contribution of this paper is to present an
intuitive, powerful visualization tool for analyzing the scala-
bility of ubiquitous managed language applications running
on native modern multicore systems. Speedup stacks point
software developers to focus either on improving the paral-
lelization of the language runtime, or on the parallel activities
between application threads, to improve speedup the most.
This tool is important for achieving a better understanding of
modern workloads on current multicore machines and future
hardware. We will make the tool publicly available.

II. SPEEDUP STACKS

We present speedup stacks to comprehensively visualize
what retards performance at both the application and the
language runtime level, or the causes of imperfect scaling.
Speedup stacks compare the achieved speedup of a multi-
threaded application to the ideal speedup and attribute the
gap between them to different possible performance delimiters.
The total bar in a speedup stack has height N where N is the
number of cores or threads. The actual speedup of a multi-
threaded application (over a single-threaded version) is marked
as the measured component of the bar. The rest of the bar
is broken up into the causes of sublinear speedup, such as
interference in the memory subsystem, synchronization over-
head, work imbalance, sequential parts of the program, etc.

Each of these components represents a performance deficiency,
and their relative contributions in the speedup stack provide
intuition as to what to optimize for the largest improvement
in performance.

While the original speedup stacks [1] required changes
to hardware and was not applicable to managed language
applications, we extend speedup stacks in this paper. We use
a light-weight infrastructure to measure thread behavior (See
Section III) on existing hardware. In addition, we extend
the concept of speedup stacks to be applicable to managed
language workloads. In particular, we newly incorporate the
managed runtime service threads that affect scalability into
the speedup stack, including the sequential parts that do
initialization and clean-up, for which our Java virtual machine
uses a service thread called the MainThread, and the auto-
matic memory manager or garbage collector (GC), which
interferes with application progress. Thus, if these components
of the speedup stack are large, this gives hints to the managed
runtime developers to better parallelize the garbage collector
or minimize sequential initialization and shutdown activities.
Additionally, we add the following performance delimiters
in our speedup stacks: synchronization activities between
threads, or when the operating system yields the processor
to another thread because it is blocked on a barrier or lock;
thread imbalance, or when certain threads have exited and
other threads are still running; and other overhead compo-
nents which can include parallelization overhead and shared
hardware resource interference, such as in caches and memory.
Below, we build up equations for quantifying the performance
deficiencies, or delimiter components, in the bar graph.

We define Ts as the execution time of the single-threaded
program. Figure 2 shows the single-threaded version of a
managed language program on the left, with Ts = 1.2. Notice
that our definition of execution time includes both application
and garbage collection phases of execution. The execution
time of the same program during multi-threaded execution will
(most likely) be shorter, say Tp (which in Figure 2 is shown
to be 0.6 on the right for four application threads). Note that
the total execution time is identical for all threads.

We define speedup as the single-threaded execution time
divided by the multi-threaded execution time:

S =
Ts

Tp
. (1)

The idealized multi-threaded execution time, assuming per-
fect parallelization, equals Ts/N with N as the number of
threads or cores (which, in Figure 2’s example, would be
1.2/4 = 0.3). The idealized multi-threaded execution time
Ts/N is often not achieved in practice, hence multi-threaded
execution time is typically larger. Or in other words, the single-
threaded execution time is usually smaller than the sum of the
execution times of all threads, because the threads have some
overhead (synchronization, garbage collection, etc.). Formally,

Ts =

N∑
i

Tp −
∑
j

Oij

 (2)

2



Time

0

0.2

0.4

0.6

0.8

1

1.2

Single-threaded Multi-threaded↔

Application 
running

GC running

T0 T0 T1 T2 T3

Fig. 2. Illustration of a single-threaded and multi-threaded managed language
application execution, with the garbage collector.

with Oij the overhead caused by component j for thread i.
By dividing this equation by Tp, we get

Ts

Tp
= S = N −

∑N
i

∑
j Oij

Tp
. (3)

This formula immediately leads to a speedup stack by
showing the different overhead components j, aggregated over
all threads, in a stacked bar. The intuition behind a speedup
stack is that it shows the reasons for sublinear scaling and
hints towards the expected performance benefit from reducing
a specific scaling bottleneck, i.e., the speedup gain if this
component is reduced to zero. This can guide programmers,
language runtime developers, and architects to tackle those
bottlenecks that have the largest impact on multi-threaded
application performance.

To build a speedup stack, we first run the single-threaded
version of the application to have a baseline. We then profile
a multi-threaded execution of the application, computing the
different overhead components for each thread (which will be
explained in the following sections). We measure the actions
that cause some threads not to run, which will result in less-
than-perfect speedup. Note that this methodology is different
from the setup used in [1], where single-threaded performance
was estimated from a single multi-threaded execution. The
reasons why we do an initial single-threaded run here are
(1) because we profile the program natively with almost no
overhead, an extra run does not take much extra time, and (2)
because we use a software-only approach, we cannot measure
contention in the hardware, and therefore we need a reference
run to quantify the part that is not captured by the software
tool and that can be attributed to hardware contention.

In the next sections we discuss the different overhead com-
ponents that Oij is comprised of, and how they are integrated
in Formula 3. We consider garbage collection, sequential
parts of the application, synchronization, thread imbalance,
and additional overheads (including hardware interference) as
components in our speedup stacks.

A. Garbage Collection

A new contribution of this work is that we consider the
overhead of the garbage collector in our construction of
speedup stacks. Garbage collection is an integral component of
many managed languages. Programmers benefit from the fact
that the managed runtime environment automatically manages
and collects memory. However, this benefit comes with a
cost; garbage collection does incur some space and time
overhead. Previous work estimates that a well-performing
stop-the-world generational garbage collector takes on average
10% of an application’s execution time [3]. With this collector,
the application is stopped while the collector traces the heap
and reclaims memory. There are also collectors that reclaim
memory while running concurrently with the application;
however, they commonly require the application to stop so
that the collector can identify a consistent set of roots to
trace from (including stack variables, statics and globals), and,
after tracing, to finally reclaim memory back to a free list.
While GC threads run concurrently with the application, they
are not directly limiting scalability (however, there may be
other effects such as hardware interference in shared resources,
which will be explained below). Thus in our speedup stacks,
we only take into account when GC pauses the application
because it is then directly affecting the application’s ability to
make progress. Note that in Figure 2, the time during which the
garbage collector is running (and the application is stopped)
is shown with a dashed line, but the number of GC threads
does not have to equal the number of application threads.

In the previous definition of speedup stacks [1], the garbage
collection component would have been a part of the yielding
component. Application threads have to yield to let GC run,
and are thus scheduled out by the OS during that time. This
version of speedup stacks more precisely divides up the yield
component into GC scalability and a synchronization compo-
nent that represents only synchronization between application
threads, as explained below.

Because the application threads are halted during their exe-
cution in order to perform garbage collection, we account for
these pauses as an overhead component that can possibly limit
speedup. Because the actual speedup of the multi-threaded
application over the single-threaded version already takes
garbage collection time into account, our overhead component
needs to only consider the scalability of garbage collection. We
thus compare the amount of time spent on GC in the multi-
threaded execution, multiplied by the number of threads, to
the time for GC in the single-threaded execution. Integrating
garbage collection into Formula 3 leads to:

S = N − N × TGC,MT − TGC,ST

Tp
−

N∑
i

∑
j O

r
ij

Tp
(4)

where TGC,ST and TGC,MT is the time needed to do garbage
collection for the single-threaded and multi-threaded execu-
tion, respectively, and Or

ij are the remaining overhead com-
ponents j for thread i. TGC,MT is the same for all threads,
i.e., we assume all GC threads are active from the start of a

3



collection to the end. We subtract TGC,ST from the garbage
collection overhead because the single-threaded execution also
has a garbage collection component, and the speedup is
measured over the whole program.

It is clear to see that if the stop-the-world phase of garbage
collection is perfectly scalable (i.e, TGC,MT =

TGC,ST

N ), this
overhead component of speedup stacks would reduce to zero.
Thus this performance delimiter suggests the effect of limited
GC scalability on achieved program speedup.

B. Sequential Parts of the Application

The speedup of a program is limited by the amount of
sequential execution in the application [4]. With managed
language applications, we consider other service threads that
stop the application’s progress and thus limit its scalability. In
Jikes RVM, there is a service thread called the MainThread
that performs the sequential part of the application, namely
initializing the Java virtual machine (JVM), performing ini-
tial compilation, spawning the application threads, and later
performing shutdown activities. It should be noted that for
single-threaded applications, there are no application threads
spawned, and therefore all application work is performed
inside this MainThread. However, we here explore multi-
threaded applications, where the MainThread limits scala-
bility because its work is not parallelized. We integrate this
component into our speedup formula, which is very similar to
the garbage collection component, because application threads
are, in essence, stopped while the MainThread is running:

S = N − N × TGC,MT − TGC,ST

Tp

− N × Tseq,MT − Tseq,ST

Tp
−

N∑
i

∑
j O

r
ij

Tp

(5)

where Tseq,MT is the execution time of the MainThread
during multi-threaded execution, and Tseq,ST during single-
threaded execution.

This sequential component of the speedup stack thus es-
timates the scalability of the MainThread and its impact
on program speedup. Our JVM does not have a parallelized
version of these initialization activities; however, if these
activities were perfectly parallelizable, this component could
be reduced to zero, improving overall program performance
and scalability.

C. Synchronization

We now consider actions between application threads (as
opposed to actions of managed language service threads) that
make some threads wait while others progress. Application
threads synchronize with each other when working on shared
data or because they have to wait on each other (for example
in a pipelined programming model). This synchronization
leads to an extended execution time — or in other words,
time when all threads are not concurrently running — and
therefore should be accounted for as an overhead component
that limits scalability. In our implementation, we intercept

futex system calls that cause a thread to wait. We thus compute
this overhead as the sum of all times a thread is waiting due
to synchronization, summed over threads. Integrating this into
Formula 5 leads to:

S = N − N × TGC,MT − TGC,ST

Tp

− N × Tseq,MT − Tseq,ST

Tp

−
∑N

i Synci
Tp

−
N∑
i

∑
j O

r
ij

Tp

(6)

where Synci is the waiting time due to synchronization for
thread i. Thus, if all threads’ waiting time due to synchro-
nization with other threads would go to zero, this speedup
stack component would disappear, thus resulting in a higher
achieved speedup.

D. Thread Imbalance

Thread imbalance happens when one or a few application
threads need (substantially) more time to execute than the
other threads, which puts a limit on the achieved speedup or
scalability of the program. To account for this we measure the
waiting time of an application thread inside an exit system
call until all application threads finish their execution (see
Section III). Integrating this into the formula leads to:

S = N − N × TGC,MT − TGC,ST

Tp

− N × Tseq,MT − Tseq,ST

Tp

−
∑N

i Synci
Tp

−
∑N

i Exiti
Tp

−
N∑
i

∑
j O

r
ij

Tp

(7)

where Exiti is the waiting time of thread i after exiting while
other threads are still running. This overhead component in the
speedup stack represents the proportion of idealized speedup
that could be gained if all application threads exit at the same
time, or are well-balanced in their work.

E. Remaining Overhead Components

The speedup S in Formula 7 has an additional component
Or

ij . The remaining overhead is due to other factors that
limit scalability and performance when moving from single
to multi-threaded applications on modern hardware. For ex-
ample, parallelizing a program typically incurs overhead due
to additional instructions being executed. Second, resource
sharing on modern multicore processors leads to interference
between threads [5]. This can manifest with cache coherence
overhead, cache misses, and the overhead of going to off-
chip memory. In our evaluation in Section V, by analyzing
the application behavior through performance counters, we
show that for our workloads, instruction count does not change
much when increasing the number of threads. We include
a final component in our speedup stacks that we thus call

4



hardware interference, which estimates Or
ij , accounting for

these extra overheads and showing their impact on speedup.
Though we cannot precisely measure this overhead in system
software, we present this component as the difference between
the measured speedup and the ideal speedup, minus all of
the other overhead components. Because we have the advan-
tage of running unmodified managed applications on current
hardware, we can quickly and accurately gather statistics on
real program behavior. Thus, if this hardware interference
component of the speedup stack is large, we recommend that
users use performance counters to analyze if the problem is
extra instructions, or shared cache or memory traffic.

III. DESIGNING THE APPLICATION PROFILING TOOL

We measure the inputs to calculate speedup stacks for
real applications running on real hardware through operating
system (OS) support using light-weight Linux kernel mod-
ules. There are several advantages to using kernel modules:
the programs require no modifications or re-compilation, the
kernel does not need to be re-compiled because the modules
are loaded dynamically, we can use a nanosecond-resolution
timer, and despite having very limited overhead (on average
0.78% for our benchmarks), our tool continuously monitors
all threads’ scheduling activities without loss of information.

To measure the values in order to construct speedup stacks,
we need to detect:

1) The number and IDs of active threads.
2) Events that cause a thread to activate and deactivate,

to detect multi-threading overhead (garbage collection,
synchronization, etc.).

3) A timer to measure overhead.
The operating system already keeps track of thread creation,

destruction, and scheduling, and has fine-grained timing capa-
bilities. We built a tool that gathers the necessary information
to construct speedup stacks using kernel modules with Linux
versions 2.6 and 3.0. The kernel modules are loaded using
a script that requires root privileges. Communication with
the modules (e.g., communicating the ID of the process that
should be monitored) is done using writes and reads in
the /proc directory. Kernel modules intercept system calls
that perform thread creation and destruction (sys exit), that
schedule threads in and out, and that do synchronization with
futex (which implements thread yielding).

Our tool keeps track of the IDs of active threads and
timestamps of interval boundaries, i.e., when any thread is
scheduled in or out. Our modules have a counter to accumu-
late the execution time of (a) the MainThread, (b) garbage
collection threads, and (c) application threads. Furthermore,
the tool also keeps track of the per-thread waiting time
due to futex system calls (synchronization) and exit system
calls (thread imbalance) in two additional counters. In our
JVM, application threads are stopped to start a stop-the-world
garbage collection phase using futex system calls. In order
to get the synchronization overhead time without garbage
collection time, we therefore subtract the collector’s execution
time from the futex waiting time in a post-processing step.

A kernel module is triggered upon a (de)activation call,
and updates state and thread counters in the following way.
The module obtains the current timestamp, and by subtracting
the previous timestamp from it, determines the execution
time of the interval that just ended. It adds that time to
the running time counter of the threads that were running
in the past interval. If a thread is halted, it records the
corresponding system call (futex or exit) and the current time,
and if a thread is woken, the waiting time is added to the
corresponding counter. Subsequently, the module changes the
set of running threads according to the information attached
to the call (thread activation or deactivation, and thread ID).
It also records the current timestamp as the beginning of the
next interval. When the OS receives a signal from software,
the counters are written out, and this information is read by a
script that generates the graphs.

Discussion of design decisions: In the design of our
tool and experiments, we have made some methodological
decisions, which do not limit the expressiveness of speedup
stacks. We keep track of only synchronization events caused
by the futex and the exit system calls, and thus our tool does
not take into account busy waiting in spin loops. However,
threading libraries are designed to avoid long active spinning
loops and yield threads if the expected waiting time is more
than a few cycles, so we expect this to have no measurable
impact. Our tool also does not directly measure interference
between threads in shared hardware resources (e.g., in the
shared cache and in the memory bus and banks), but we
estimate this in a separate component of our speedup stacks.

When a thread performs I/O, the OS schedules that thread
out. We choose not to track I/O system calls separately in
our kernel modules because most I/O behavior is already
accounted for as inactive and we found this component to
be very small in our setup. Furthermore, we provide sufficient
hardware contexts in our hardware setup, i.e., at least as many
as the maximum number of runnable threads. We thus ensure
that threads are only scheduled in and out due to synchroniza-
tion events, and factor out the impact of scheduling due to time
sharing a hardware context. We thus also implicitly support
SMT environments. Our modules can be easily updated to
also account for I/O overhead and oversubscription overhead
(i.e., more threads than hardware contexts) if needed. These
overheads can be visualized in a speedup stack, similar to
synchronization and imbalance overheads.

While other OS activities besides system calls could affect
the execution time of a particular run of an application, such
as page faults, the OS would schedule those threads out and
thus our system would count that time as inactive. However,
the user is encouraged to repeat runs multiple times and use
the most consistent (non-outlier) runs for comparison with the
corresponding single or multi-threaded executions.

To gather our results, we read out our cumulative thread
statistics at the end of the program run. We then construct
speedup stacks that summarize the behavior of the entire
application execution. However, our tool can be given a signal
at any time to output, and optionally reset, thread counters.

5



Thus, speedup stacks can be constructed at any time during
the program run, and can be used to explore phase behavior, or
analyze particular sections of code for scalability bottlenecks.

IV. EXPERIMENTAL METHODOLOGY

We perform experiments on unmodified applications run-
ning on real hardware to demonstrate the usefulness of our
analysis tool. We analyze both application and service thread
performance and scalability using speedup stacks.

We evaluate four multi-threaded Java benchmarks from the
DaCapo 2009 benchmark suite [6]. Although eclipse spawns
multiple threads, we found that only one thread is running for
the majority of the execution, so we categorize it as a single-
threaded application and exclude it from this study. We also
leave out avrora and pseudoJBB from our analysis because
it is impossible to change these benchmarks’ thread count
without changing the input set. Thus, we analyze lusearch,
which incurs 1.15% measurement overhead with our tool, pmd
which incurs 0.53%, sunflow with 1.04% overhead and xalan
with only 0.40% overhead. The average overhead from the
kernel module is just 0.78% across our benchmarks because
the kernel modules only have to do small calculations when
threads are scheduled in or out.

For our experiments, we vary the number of application
threads (1, 2, 4 and 8), but set the number of garbage collector
threads to two, following recommendations that Jikes performs
best with this number [7]. We experiment with different heap
sizes (as multiples from the minimum size that each bench-
mark can run with based on the stop-the-world collector). We
run the benchmarks for 15 iterations, and present results from
the 13th iteration to show stable behavior.

We perform our experiments on an Intel Xeon E5-2650L
server, consisting of 2 sockets, each with 8 cores, running a
64-bit 3.2.37 Linux kernel. Each socket has a 20 MB LLC,
shared by the 8 cores. For our setup, we found that the number
of concurrent threads rarely exceeds 8, with a maximum of 9
(due to a dynamic compilation thread). Therefore, we only use
one socket in our experiments with HyperThreading enabled,
which leads to 16 available hardware contexts. This setup
avoids data traversing socket boundaries, which has an impact
on performance that is hardware related [8]. The availability
of 16 hardware contexts does not trigger the OS to schedule
out threads other than for synchronization or I/O.

We run all of our benchmarks on Jikes Research Virtual
Machine version 3.1.2 [2]. We use the default best-performing
garbage collector (GC), the stop-the-world parallel genera-
tional Immix collector [9]. We also perform experiments with
Jikes’ concurrent collector. Jikes RVM uses a mark-sweep
snapshot-at-the-beginning concurrent GC algorithm. The con-
current collector initiates a new collection cycle with a trigger:
after a particular percentage of total memory is allocated, a
new concurrent collection cycle is triggered. We use Jikes’
default trigger value.

Jikes’ concurrent collector requires a small pause of the
application to first identify a consistent root set, and later to
actually free memory. Between these two actions, the collector

threads run concurrently with the application threads in order
to trace the object graph. The concurrent collector in Jikes
spawns different sets of threads to perform the stop-the-world
activities and the concurrent activities. If the application is
rapidly allocating while the concurrent GC is running such
that the garbage collector cannot free up memory fast enough
to accommodate new memory requests, the GC forces the
application threads to stop and finishes collection in a stop-the-
world mode [10]. As previously explained, the GC scalability
component of speedup stacks represents only the stop-the-
world portion of the concurrent collector, as the concurrent GC
activity does not inherently limit application thread scalability.

V. ANALYZING SCALING BEHAVIOR WITH
STOP-THE-WORLD GARBAGE COLLECTION

For understanding how the whole managed application
scales and the relative contributions of various multi-threaded
performance deficiencies, we present speedup stacks as ex-
plained in Section II. In this section, we perform experiments
with the stop-the-world garbage collector using two threads
and a heap size of 2× the minimum.

Figure 3 shows speedup stacks for our benchmarks with
2, 4 and 8 application threads as compared to their single-
threaded versions. The total height of the bar is equal to
the ideal speedup, or the number of application threads.
The orange component at the bottom of each stack shows
the measured speedup between a single-threaded and multi-
threaded execution and the colored boxes on top of it show
the various scalability delimiters and their impact on speedup.

From the stacks we can see that most of our applications
do not scale very well: no 8-threaded application achieves a
speedup much more than 4. Applications sunflow and xalan
show comparable measured speedup results, but the reason
why their speedup is limited is different. While sunflow
mostly suffers from interference in the underlying hardware,
xalan mostly suffers from the limited garbage collector scala-
bility. Pmd is the application that scales the worst because of
one thread running longer than the others. Pmd is limited by
one large input file [7], that if broken up, could significantly
reduce the thread imbalance component. The reason why luse-
arch does not scale well is a combination of all components
in the speedup stack. The GC’s limited scalability is the
main reason, together with hardware interference between the
threads. For lusearch and pmd, if the language runtime could
improve both the garbage collector’s and the MainThread’s
(sequential parts) parallelization, multi-threaded speedup could
improve significantly.

To understand the component for hardware interference
better, we look at data gathered from hardware performance
counters in Figure 4. The performance counter data reveals
that the number of instructions stays almost constant for
all benchmarks when increasing the number of application
threads, meaning that speedup is not limited because of addi-
tional instructions (called parallelization overhead) necessary
for creating threads, doing synchronization, etc.

6



0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads

lusearch pmd sunflow xalan

Sp
ee

du
p

Measured Hardware Interference Synchronization Thread Imbalance Sequential Parts Garbage Collector

Fig. 3. Speedup stacks for all applications with a stop-the-world garbage collector (2×min heap size).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
st

ru
ct

io
ns

L1
-lo

ad
s

L1
-lo

ad
s-

m
is

se
s

LL
C

-lo
ad

s

LL
C

-lo
ad

-m
is

se
s 

In
st

ru
ct

io
ns

L1
-lo

ad
s

L1
-lo

ad
s-

m
is

se
s

LL
C

-lo
ad

s

LL
C

-lo
ad

-m
is

se
s 

In
st

ru
ct

io
ns

L1
-lo

ad
s

L1
-lo

ad
s-

m
is

se
s

LL
C

-lo
ad

s

LL
C

-lo
ad

-m
is

se
s 

In
st

ru
ct

io
ns

L1
-lo

ad
s

L1
-lo

ad
s-

m
is

se
s

LL
C

-lo
ad

s

LL
C

-lo
ad

-m
is

se
s 

lusearch pmd sunflow xalan

R
el

at
iv

e 
to

 o
ne

 th
re

ad

2 threads 4 threads 8 threads

Fig. 4. Data from hardware performance counters for all applications with a stop-the-world garbage collector (2×min heap size). (Data normalized to one
application thread.)

For sunflow, which has the largest interference component,
the number of last-level cache (LLC) loads goes up steeply
when going to 4 and 8 application threads, which is expected
as the GC activity increases as well as cache coherence
activity. However, the number of LLC load misses does not
increase significantly, and 2 application threads experience
fewer misses than one application thread. This suggests that
sunflow has a lot of shared data between threads. For other
benchmarks hardware interference translates into a combina-
tion of an increased number of LLC loads and LLC load
misses, particularly for lusearch. Lusearch allocates a lot
of memory at a high rate [8], and thus the GC activity could
contribute to this larger amount of LLC traffic.

VI. ANALYZING SCALING BEHAVIOR WITH CONCURRENT
GARBAGE COLLECTION

In this section, we explore the scalability of multi-threaded
Java applications running with a concurrent collector using
speedup stacks. As previously explained in Section II-A, the
GC component of speedup stacks only measures the limited
scalability of the stop-the-world phases of garbage collection,
because they directly inhibit the progress of the application.

Figure 5 shows speedup stacks for the same applications
as in Figure 3, but now running with a concurrent garbage
collector. In this experiment we use the same heap sizes for
the applications as in the previous section. The speedup stacks
reveal that for all benchmarks the impact of GC on speedup
has become larger compared to using a stop-the-world garbage
collector. In fact, for three benchmarks, the measured speedup
is reduced when going from 4 to 8 application threads. The

7



0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads

lusearch pmd sunflow xalan

Sp
ee

du
p

Measured Hardware Interference Synchronization Thread Imbalance Sequential Parts Garbage Collector

Fig. 5. Speedup stacks for all applications with a concurrent garbage collector (2×min heap size).

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads

lusearch pmd sunflow xalan

Sp
ee

du
p

Measured Hardware Interference Synchronization Thread Imbalance Sequential Parts Garbage Collector

Fig. 6. Speedup stacks for all applications with a concurrent garbage collector (10×min heap size).

application that suffers the most from the garbage collector’s
limited scalability is lusearch, because of its high allocation
rate [8]. Because of the excessive allocation, the concurrent
collector is not able to free up memory fast enough [10], and
transitions to stop-the-world mode, which retards the appli-
cation’s scalability. We conclude that the concurrent garbage
collector in Jikes RVM does not scale well, especially with
small heap sizes, and if fixed by developers, could improve
application scalability significantly.

To explore the scalability of the concurrent garbage collector
when the heap size is not constrained, we also ran our
applications with a larger heap size (10× the minimum heap
size used with the stop-the-world collector). The speedup
stacks are shown in Figure 6. We see that the impact of
GC’s scalability on speedup is significantly reduced and the
measured speedup is improved, compared to Figure 5 (except
for pmd that suffers from a large thread imbalance). For

sunflow and xalan, the main speedup delimiter now is hard-
ware interference, as expected because of the many threads
concurrently running, while for lusearch it is a combination
of different components. For comparison, we also performed
an experiment using the stop-the-world collector and the larger
heap size, and found no noticeable difference between the
generated speedup stacks for the larger and smaller heap sizes.
However, the measured component of the speedup stacks is
slightly higher when using the concurrent (versus stop-the-
world) collector at the larger heap size, because the application
threads are not stopped from making progress as much because
of GC. Furthermore, all benchmarks (except pmd) seem to
have a reduced synchronization component in the speedup
stacks with a concurrent collector, probably due to the stop-
the-world collector issuing more futex operations. Also, pmd
and xalan have much reduced garbage collector scalability
components when using Jikes’ concurrent GC, while sunflow

8



has a reduced hardware interference component.
For explaining the interference in hardware, we measured

hardware performance counters when running with a con-
current collector and a large heap (omitted due to space
constraints). Lusearch suffers from an increased number of
LLC loads as the application thread count increases, and LLC
load misses increase from 2 to 4 application threads, but go
down for 8 threads. This suggests that with a larger number
of application threads, there is more data sharing (between
application and GC threads) in the LLC. Interestingly, this
was not the case when using a stop-the-world collector (see
Figure 4), which can disrupt the LLC and incur more LLC load
misses for the application, especially at high thread counts.

Sunflow has an increasing number of L1 loads, misses
and LLC loads, which are the main causes of the hardware
interference. This behavior is different than when sunflow
runs with a stop-the-world garbage collector, which does not
have an increasing number of L1 loads as the application
thread count increases, but has a larger increase in LLC loads.
With the concurrent GC, the increase in L1 loads are due to
the garbage collector accessing the L1 cache more often at
the same time as the application. However, the application
does not suffer much because the data is kept in the upper
levels of cache. Xalan and pmd show similar behavior with
a concurrent collector as with a stop-the-world collector: an
increasing number of L1 load misses that result in more LLC
load accesses and LLC load misses.

We have shown that speedup stacks facilitate the visual-
ization of performance and scalability bottlenecks in multi-
threaded managed language applications. They reveal the
impact of the limited scalability of the garbage collector,
initialization activities, synchronization activities between ap-
plication threads, imbalance of application threads, and the
effect of hardware interference in the memory subsystem
(which can also be explained by performance counter data).
Thus, the speedup stack directly reveals whether time should
be spent parallelizing the managed runtime better, looking at
the application threads’ interactions, or trying to minimize
shared memory system interference.

VII. RELATED WORK

We now describe related work in performance visualization
and Java parallelism analysis.

A. Performance Visualization

Software developers heavily rely on tools for guiding where
to optimize code. Commercial offerings, such as Intel VTune
Amplifier XE [11], Sun Studio Performance Analyzer [12],
Rogue Wave/Acumem ThreadSpotter1 (which targets memory
problems) and PGPROF from the Portland Group [13] use
hardware performance counters and sampling to derive where
time is spent, and point the software developer to places in the
source code to focus optimization. These tools provide fairly
detailed analysis at a fine granularity in small functions and

1http://docs.roguewave.com/threadspotter/2011.1/manual/

individual lines of code. They do not automatically analyze
managed language service threads separately from application
threads, and they do not give a broader view on the scalability
of the application or what to focus on to improve it.

Recent work focused on minimizing parallel overhead by
enabling the analysis of very small code regions, such as
critical sections [14], [15]. Other related work [16] proposes a
simple and intuitive representation, called Parallel Block Vec-
tors (PBV), which map serial and parallel phases to static code.
Other research proposes the Kremlin tool, which analyzes
sequential programs to recommend sections of code that would
get the most speedup from parallelization [17]. All of these
approaches strive at providing fine-grained performance in-
sight. However, none of these approaches provide a simple and
intuitive visualization and understanding of gross performance
scalability bottlenecks in managed multi-threaded applications,
as our work does and which is needed by software developers
to guide optimization.

Recent work presented criticality stacks [18], and then bottle
graphs [7], which display per-thread contributions to total
program performance and parallelism. This work points out
thread imbalances, but it does not suggest how much total
application performance could be improved by removing a
particular scalability bottleneck.

IBM WAIT 2 [19] is a performance visualization tool for
diagnosing performance and scalability bottlenecks in Java
programs, particularly server workloads. It uses a light-weight
profiler that collects samples of information about each thread
at regular points in time (configurable through a sampling rate
parameter). While WAIT is a powerful analysis tool for Java
programs, it has some limitations. First, it can be applied only
to Java application threads, not to parallel programs written
in other languages or to Java virtual machine service threads,
both of which can be analyzed easily with speedup stacks
because we use OS modules. Second, WAIT is sampling-
based, and thus collects a snapshot of information only at
specific program points, with increasing overhead with finer-
granularity sampling. In contrast, speedup stacks contain more
information for lower overhead. Our OS modules are contin-
ually monitoring every thread status change, and aggregating
our metrics at all times in a multi-threaded program run.

B. Java Parallelism Analysis
Analyzing Java performance and parallelism has become

an active area of research recently. Most of these studies
use custom-built analyzers to measure specific characteristics
of interest. For example, Kalibera et al. [20] analyze the
concurrency, memory sharing and synchronization behavior
of the DaCapo benchmark suite. They provide concurrency
metrics and analyze the applications in-depth, focusing on
inherent application characteristics. They do not provide a
visual analysis tool to measure and quantify performance and
scalability, and reveal bottlenecks on real hardware as we do.

Researchers recently analyzed the scalability problems of
the garbage collector in the OpenJDK JVM [21]. They did

2https://wait.ibm.com/

9



follow-on work to optimize scalability at large thread-counts
for the parallel stop-the-world garbage collection in Open-
JDK [22]. Similarly, Chen et al. [23] analyzed scalability
issues in the OpenJDK JVM, and provided explanations at
the hardware level by measuring cache misses, DTLB misses,
pipeline misses, and cache-to-cache transfers. They did not,
however, explore the scalability limitations of the parallel
collector itself, or how it interacts with the application, as
we do in this paper.

VIII. CONCLUSION

This paper proposes speedup stacks to visualize the scala-
bility bottlenecks of managed language workloads on native
multicore hardware. Speedup stacks provide a comprehensive
breakdown of the causes of limited scalability in programs,
revealing the causes of sublinear scaling. Speedup stacks show
the relative contributions of various performance delimiters:
the garbage collector, sequential parts of the application or
Java virtual machine, synchronization, thread imbalance, and
hardware interference. Speedup stacks enable users to imme-
diately see whether the parallelization of the language runtime
service threads needs to improve, or if the application code it-
self needs to be re-written to increase multi-threaded speedup,
or whether other bottlenecks limit parallel performance.

To construct speedup stacks on real hardware, we pro-
pose a light-weight and low-overhead approach for measuring
scheduling behavior using OS kernel modules with no changes
required to software or hardware. We present the speedup
stacks of several multi-threaded Java benchmarks to explore
not only the application’s scalability, but also the performance
of the JVM’s service threads. We reveal several insights that
we have gathered about Jikes RVM’s garbage collectors; in
particular, we find that the concurrent collector scales worse
than the stop-the-world collector at small heap sizes, but at
larger heap sizes, the opposite is true.

Overall, we demonstrate that speedup stacks are particularly
effective at visualizing the performance bottlenecks of multi-
threaded managed language applications. Speedup stacks offer
programmers and computer architects a comprehensive under-
standing of modern applications running on current multicore
hardware, and guide them to the scalability bottlenecks that,
when fixed, can optimize performance.

REFERENCES

[1] S. Eyerman, K. Du Bois, and L. Eeckhout, “Speedup stacks: Identifying
scaling bottlenecks in multi-threaded applications,” in Proceedings of
the International Symposium on Performance Analysis of Software and
Systems (ISPASS), Apr. 2012, pp. 145–155.

[2] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo,
J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen, “Implement-
ing Jalapeño in Java,” in Proceedings of the Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Nov. 1999, pp. 314–324.

[3] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley, “The yin and
yang of power and performance for asymmetric hardware and managed
software,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2012, pp. 225–236.

[4] G. M. Amdahl, “Validity of the single-processor approach to achieving
large-scale computing capabilities,” in Proceedings of the American
Federation of Information Processing Societies Conference (AFIPS),
Sep. 1967, pp. 483–485.

[5] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-thread Cycle Accounting
in Multicore Processors,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 1–22, Jan. 2013.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. L. Hosking, M. Jump, H. B. Lee, J. Moss, A. Phansalkar, D. Ste-
fanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann, “The
DaCapo benchmarks: Java benchmarking development and analysis,” in
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), Oct. 2006, pp. 169–190.

[7] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout, “Bottle Graphs:
Visualizing Scalability Bottlenecks in Multi-threaded Applications,” in
Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications (OOPSLA),
Oct. 2013, pp. 355–372.

[8] J. B. Sartor and L. Eeckhout, “Exploring multi-threaded Java application
performance on multicore hardware,” in Proceedings of the Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), Oct. 2012, pp. 281–296.

[9] S. M. Blackburn and K. S. McKinley, “Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator perfor-
mance,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), Jun. 2008, pp. 22–32.

[10] S. Akram, J. B. Sartor, K. V. Craeynest, W. Heirman, and L. Eeckhout,
“Boosting the priority of garbage: Scheduling collection on heteroge-
neous multicore processors,” ACM Transactions on Architecture and
Code Optimization, vol. 13, no. 1, pp. 4:1–4:25, Mar. 2016.

[11] Intel, “Intel VTuneTM Amplifier XE 2013,” http://software.intel.com/en-
us/articles/intel-vtune-amplifier-xe/, 2013.

[12] M. Itzkowitz and Y. Maruyama, “HPC Profiling with the Sun StudioTM

Performance Tools,” in Tools for High Performance Computing.
Springer, 2010, pp. 67–93.

[13] STMicroelectronics, “PGProf: parallel profiling for scientists and engi-
neers,” http://www.pgroup.com/products/pgprof.htm, 2011.

[14] A. Bhattacharjee and M. Martonosi, “Thread criticality predictors
for dynamic performance, power, and resource management in chip
multiprocessors,” in Proceedings of the International Symposium on
Computer Architecture (ISCA), Jun. 2009, pp. 290–301.

[15] J. Demme and S. Sethumadhavan, “Rapid identication of architectural
bottlenecks via precise event counting,” in International Symposium on
Computer Architecture (ISCA), Jun. 2011, pp. 353–364.

[16] M. Kambadur, K. Tang, and M. A. Kim, “Harmony: Collection and
Analysis of Parallel Block Vectors,” in International Symposium on
Computer Architecture (ISCA), Jun. 2012, pp. 452–463.

[17] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: Rethinking
and Rebooting Gprof for the Multicore Age,” in Proceedings of the
Annual ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Jun. 2011, pp. 458–469.

[18] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality
stacks: Identifying critical threads in parallel programs using synchro-
nization behavior,” in Proceedings of the Annual International Sympo-
sium on Computer Architecture (ISCA), Jun. 2013, pp. 511–522.

[19] E. Altman, M. Arnold, S. Fink, and N. Mitchell, “Performance Analysis
of Idle Programs,” in Proceedings of the Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), Oct. 2010, pp. 739–753.

[20] T. Kalibera, M. Mole, R. Jones, and J. Vitek, “A black-box approach to
understanding concurrency in DaCapo,” in Proceedings of the Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), Oct. 2012, pp. 335–354.

[21] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro, “Assessing the
Scalability of Garbage Collectors on Many Cores,” ACM SIGOPS:
Operating Systems Review, vol. 45, no. 3, Dec. 2011.

[22] ——, “A study of the scalability of stop-the-world garbage collectors
on multicore,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Mar. 2013,
pp. 229–240.

[23] K. Y. Chen, J. M. Chang, and T. W. Hou, “Multithreading in Java:
Performance and scalability on multicore systems,” IEEE Transactions
on Computers, vol. 60, no. 11, pp. 1521–1534, Nov. 2011.

10


