G ——
CWM” ¢SS

Secure Coordination of RIA Tiers

i
Universiteit
Brussel LEUVEN ONDERNEMEN

¥

Strategic Basic Research

business cases

problems

health,
CONNECT

_/
e

VIKINGS

xenit XaoE

ﬂ\/ISO"

Alcatel-Lucent

bl

AGENTSCHAP
INNOVEREN &
ONDERNEMEN

)‘ @ ‘
= 2 F
0 o4
\4&

o Prof. Elisa Gonzalez Boix: distribution

o Prof. Coen De Roover: program analysis
o Prof. Frank Piessens: security

Vrije KATHOLIEKE UNIVERSITEIT
GG LEUVEN
Brussel

technology

demonstrators

Evolution of web application architectures

HTTP Request

entirely new page

L
. K
| w

£

19AJ3s uo uonjedijdde Jiyyouow

multi-page application

Evolution of web application architectures

XML HTTP Request

data and code

1

application distributed vertically across tiers

single-page application

-
-
o

Evolution of web application architectures

1

)
N
-

i

replicated data and state

rich internet application

Evolution of web application architectures

application distributed horizontally
between instances of the same tier

U-services on server tier

Evolution of web application architectures

multi-page application single-page application

application logic and state is increasingly distributed
o vertically across different tiers
offline and desktop-like functionality
o horizontally between instances of same tier
collaborative functionality and scalability

rich internet application H-services on server tier

Easier said than done

K application logic and state is increasingly distributed
\ o vertically across different tiers
, » v oy offline and desktop-like functionality
‘ p \./ o horizontally between instances of same tier
d .r - \ " collaborative functionality and scalability

L. \

essential complexity

rich internet applications are distributed programs
how to maintain consistency of replicated and shared state?
how to ensure security of replicated and shared state?

accidental complexity

mastering and reconciling a myriad of tier-specific technology
HTML 15 CSS NODE

S RSN S b

Research is needed

60

¥ tools & languages

M testing & evaluation

6

30
B models, methods &
methodologies

2
4
3
B mobility & device
20 dependency
¥ migration & re-
engineering
M architecture &
10 N
application frameworks
2
B adaptivity,
personalization &
0 __- : i : i : . : contextualization

2004 2005 2006 2007 2008 2009 2010 2011

133 publications from 2002-2011

“Few exceptions aside, we found very little evidence of
research in RIA-relevant issues such as offline functionality,
multidevice RIAs, performance, or security.

Given the huge amount of legacy applications in the real
world and the willingness for cooperation to bring these
applications into the RIA age, additional research starting
from practical problems (e.g., legacy HTML code) is needed.”

only 9%, even though these are the

concrete means for building a RIA!

Accumulated resuls “athers “Ten years of Rich Internet Applications:
s erace A systematic mapping study, and beyond.”

i a sabity & sccsablty [Casteleyn, Garrigds and Mazon, 2014]

Ten Years of Rich Internet Applications: A Systematic Mapping Study, and Beyond 18:25

migrated to support RIAs. Examples include Melid et al. [2008], extending the OOH
method, Machado et al. [2009], extending UWE, and Fraternali et al. [2010], extending
‘WebML. In all of these proposals, particular attention was paid to UI research. In this
respect, we mention the RUX method [Preciado et al. 2008a], which is complementary
to existing (Web 1.0) methods and focuses exclusively on migrating the UI of Web 1.0
applications to RIAs. Unfortunately, all these approaches suffer from the fact that, in
practice, rich conceptual models are seldom available for existing Web sites.

A second strain of research tackles this issue and attempts to extract sufficiently
expressive models from existing Web 1.0 applications. To this aim, static and dynamic
analysis techniques are deployed to reverse-engineer legacy Web 1.0 applications into
navigation models [Amalfitano et al. 2008, 2009; Pang et al. 2010] and clustering
techniques are used to identify i pages to be in single-page RIAs
[Mesbah and van Deursen 2007]. Nevertheless, these techniques are in their infancy,
often described on the basis of a single case study and based on a specific technology.
We can conclude that the research community has detected the importance of modeling
in RIA development, resulting in a myriad of extensions on existing Web engineering
‘model-driven methods. Nevertheless, there exists a gap between existing model-driven
approaches on one hand an ineering and reverse-engineeri iques neces-
sary to extract the required rich conceptual models required to allow effective evolution
of Web 1.0 application to RIAs. Therefore, we urge the research community to consider
both research areas and to converge them so each can reap the fruits of the other’s

work.

On the other hand, few exceptions aside, we found very little evidence of research
in RIA-relevant issues such as offline i i idevi 3
or security. Given the huge amount of legacy applications in the real world and the
willingness for cooperation to bring these applications into the RIA age, additional
research starting from practical problems (e.g., legacy HTML code) is needed.

The paradigm shift caused by RIA principles also fundamentally changes the under-

ility an ility of Web icati Classical static analysis no longer
suffices and novel dynamic analysis techniques that are able to cope with client-side
behavior are needed. Initial work in the area is performed by, for example, Amalfitano

et al. [2010a] and Mesbah et al. [2008]. P and are
vastly more complex thus require new measures and ways to cope with the increased
complex client-server ication caused by h calls and the distribu-

tion of task functionality. Handling data in a uniform way at the client side, under
various frameworks and browser support, is another recognized problem for which few
generally appli solution Is have been d (we mention Zhao et al.
[2010] as a first attempt to unify RIA data access). Finally, security implications of
the paradigm shift that RIAs embody and that are highly relevant in an industrial
setting lack i research to be i solved (work i focusing on
RIA security issues can be found in Kontaxis et al. [2011] and Livshits and Erlingsson
[2007]).

As already stated, RIAs are complex Web ications in which the
of a highly interactive user interface plays an important role [Tanikella et al. 2006;
Pandurino et al. 2010; Martinez-Ruiz et al. 2009; Martinez-Nieves et al. 2010]. How-
ever, according to Tanikella et al. [2006], i ion decisions in RIA
are not a consequence of a detailed process of understanding the user interface require-

ments, thus the RIA may fail in users’ Therefore,
it is crucial that RIA engi pay parti fon in articulating and consideri
UI requirements to make informed i ion decisions during the

process. To this aim, requirement engineering for RIA should support and encourage
closer collaboration between stakeholders (i.e., experts in UVHCI and experts in the

ACM Transactions on the Web, Vol. 8, No. 3, Article 18, Publication date: June 2014,

The Vision of Tearless

rogramming

Multi-tier Functional Reactive Programming for the Web

Bob Reynders
iMinds - Distrinet, KU Leuven
bob.reynders@student.kuleuven.be

Abstract

The development of rot
applications is challeng]
deal with multiple progr
events, propagating data
servers, data consistency ¢
for (partly) addressing the
Two relevant ones are (1)
tional reactive programmi
languages support the de
a single language, and hi
to distribution. FRP offe
event-driven programmit
able. However, existing v
languages exploit the ben
for example by restricting
We propose multi-tier
to writing web applicatio
multi-tier languages, and
sum of its parts. In multi
server and client together
of behaviors (signals) anc
where the boundary betw
make our approach more
its potential, this paper p
plementation of a multi-
programming language St
DSL that makes Scala us
allows us to present initi
multi-tier FRP approach ¢
periment with possible ar
Concretely, we show po
exposing client identity
loading clients with the 1

Permission to make digital or hard
classroom use is granted without fex
for profit or commercial advantage &
on the first page. Copyrighis for con
must be honored. Abstracting with ct
10 post on servers or to redistibute
fee. Request permissions from perm
Onward! 2014, October 20-24, 2
Copyright © 2014 ACM 978-1-450
buupilds.doi org/10.1145/2661136.2

Dominique Devriese
iMinds - Distrinet, KU Leuven
{firstname.lastname}@cs. kuleuven.be

Frank Piessens

Towards Tierless Web Development without Tierless Languages

Laure Philips* ~ Coen De Rooverf*

Tom Van Cutsem*

Wolfgang De Meuter*

* Software Languages Lab, Vrije Universiteit Brussel, Belgium
+ Software Engineering Laboratory, Osaka University, Japan
Iphilips, cderoove, tvcutsem, wdmeuter @vub.ac.be

Abstract

Tierless programming languages enable developing the typ-
ical server, client and database tiers of a web application as
asingle linguistic program. This style s
in stark contrast to the current practice which requires com-
bining multipl ies and languages. A

1. Introduction

Contemporary web development has become complex.
‘There is an increasing demand for interactive features, col-
laboration between clients, support for offline functional-
ity, etc. Realizing such advanced features in a traditional

n
‘myriad of tierless programming languages has already been
proposed, often featuring a JavaScript-like syntax. Instead of
introducing yet another, we advocate that it should be possi-
ble to develop tierless web applications in existing general-
purpose languages. This not only reduces the complexity
that developers are exposed to, but also precludes the need
for new development tools. We concretize this novel ap-
proach to tierless programming by discussing requirements
on its future instantiations. We explore the design space of
the program analysis for determining and the program trans-
formation for realizing the tier split respectively. The former
corresponds to new adaptations of an old familiar, program
slicing, for tier splitting. The latter includes several strategies
for handling cross-tier function calls and data accesses. Us-
ing a prototype instantiation for JavaScript, we demonstrate
the feasibility of our approach on an example web applica-
tion. We conclude with a discussion of open questions and
challenges for future research.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Concurrent, distributed, and parallel languages;
D.2.11 [Software Architectures): Patterns (client/server)
General Terms Languages, Design

Keywords Tier splitting, Program slicing, Tierless Pro-
gramming, JavaScript

preprint’)

three-tier ires developers to select and mas-
ter a myriad of technologies. Each tier comes with its own
technology stack. Examples include a query language for
the database tier, PHP or Java for the server tier, and a
combination of JavaScript, HTML and CSS for the client
tier —often augmented with cross-tier technology for asyn-
chronous communication such as Ajax and jQuery. Itis up to
the programmer to combine and align the different technol-
ogy stacks. This might not only require a lot, but also rather
complex glue code for contemporary web applications. For
instance, to ensure the different data models of each tier are
kept in sync.

Tierless programming languages aim to reduce this com-
plexity. They enable developing a web application as a sin-
gle mono-linguistic application, which renders its develop-
ment akin to that of a desktop application. A preprocessor or
the runtime of these languages realizes a split into a client,
server and sometimes a database tier, where communica-
tion between the different tiers is handled transparently. The
dynamically-typed functional language Hop [10] is an early
example. It discerns code destined for the server and client
tier based on developer-provided annotations at the level of
individual expressions. The statically-typed functional lan-
guages Links [2] and Opa’ require such annotations at the
level of complete functions.

These approaches to tierless web development require an
investment in novel and perhaps esoteric programming lan-
guages. More importantly, they require developers to anno-
tate code meticulously with tier splitting information —a
time-consuming and often error-prone process. This is par-
ticularly problematic given the general lack of tool support
for these languages. Developers are on their own as far as
understanding, testing, validating, debugging and refactor-
ing tierless web applications is concerned. We therefore ad-
vocate to develop tierless web applications in a general-

"nttp://wws. opalang.org

21421

tierless

enabling
technologies

“The Tearless project envisions a future in which
multi-tier applications are developed, tested and maintaine
as a single artefact that spans all tiers.

This tierless programming relieves developers of vertical an
horizontal distribution concerns, while ensuring the
consistency and security of shared logic and state.”

both published at “International Symposium on
New Ideas, New Paradigms, and Reflections on

Programming and Software” (ONWARD14

tierless.js Server.js

tier splitting

client.js
| server-specific code
| client-specific code
generated code implementing distribution concerns
" generated code implementing consistency concerns]

I generated code implementing security concerns

Your JavaScript code:

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Snippets ~

ids.push(user_id);
names .push (name) ;

/*@broadcast*/

hear (name + joined');

return user_id;

function changeUser (user_ id, newName) {

var idPos = ids.indexOf (user id);

if (names.indexOf (newName) >= 0){
throw new userExistsError('Usernéi

Jipda

@l Transform CPS QI Tier split

Esprima JSLint

Sliced code:

0 O 1 & W N

11
12
13
14
15
16

var name;
var btn;
var text;
name = 'user' + Math.random();
btn = §('#btn');
text = $('#text');
btn.click(chatHandler);
client.expose({
'displayMessage': function (name, message

text.val(name + ':said + message);

})i
/* SERVER */
server.expose({
'broadcast’': function (name, message, cad

based on a sophisticated

analysis of your code

o8(Sh] function §... 582{Sn) Mathefrard..

\.‘R

m #13_out rew n{iSH ¢ s38SH retum rew

..............

The Vision of Tearless

tierless
programming

enabling
technologies

“We will realize our long-term vision gradually through
enabling technologies and accompanying tooling.”

for implementing distribution concerns
for implementing consistency concerns [l
for implementing security concerns]

libraries
I

o migration assistant for existing code
end-to-end debugger
end-to-end security monitor

T

tools

Example of library + tooling: consistency

library

replicated data
and state

-

£

desired offline service level?

CRDTs transposed to a cloud setting

a
K
-

o

"Y

how to determine which data needs to be replicated for a

prototype JS implementation of Cloud Types [Burckhardt et al, 2012]

An open implementation of Cloud Types for the Web

Tim Coppieters Laure Philips Tom Van Cutsem
Vrije Universiteit Brussel Vrije Universiteit Brussel Vrije Universiteit Brussel
tcoppiet@uub.ac.be ohipsOuub ac be tvcutsem@uub.ac.be
Wolfgang De Meuter

Vrije Universiteit Brussel
wdmeuter@uub.ac.be

Abstract

Cloud Types is an interesting EC model that closely integrates
i comisency model wih th progamming g, rendeing
EC programming more feasible for the average progr

Bav crestedan pen impleentaion of th el in 4 JavaScnm
endto-end implementation that can act both as an

Patorm fo resarchrs and 5 an open EC model o th by

as an RDBM-like authorization system in combination with Views

Gategories and Subjet Descipors D.13. (Concuret Pro-
Sramning): Disiioted Progeaming

Keywords Cloud Types, JavaScript, Web Applications, Autho-
tization, Eventual Consistency

1. Introduction
Duing e st few yearsft e bave boen made (o presnt
easier Eventual Consistency (EC) programming y inte-
fgating it more clsely wih th programming Iang\lig: “Clowd
'lypex[l] is one of the m

Fo e o epleaion, st ol ey of
the data) by using automatically replicated data types with commm
{ative operatons as lso iroduced by CRI(3) o laswrier
semantics and strong consistency whenever req: the
rograming model et he developer o ceran EC choies
(e.g. no conflict detection/resolution), it doe
anatle covionancn for th developers 1 cvats EC i
tions.

2. Open Web Implementation

We believe such an approach is the way 10 go to make EC pr
gramming more feasible. More intelligent language abstractions

Permisson t ke digal orhar capis f l or par of this workfo personsl ox

e f ACM

o R i o i rsem oy,
papgC 13-16,20
Conyigh © 2014 A3 11450 376 4 135,
e 011452496831 2506850

that cover the complex problems of EC will help and attract more:
developers to the EC community. In order to further progress our
research in that direction, it is key to experiment with and build on
previous work. Although the mentioned Cloud Types model is al-
ready uilized n TouhDevelp, closd-soutee Micosot st
supported by the crestors of Cloud Types, it was not yet o
tionalized in such way that mscmhcrs/dmlopm can ex

with t, hands on.

erefore, we decided 10 implement the complete model in a
JavaSeript end-to-end library approach'. In short, it allows you to
types using a Node.js

EC data on the client-side (e.¢. in your browser) with another JS.
library, using WebSockets for communication. The library has a
clear API, an extensive documentation and an implementation that
is kept as close to the original description of the language model
as possible. This (1) allows researchers 1o better understand and
experiment with the model and (2) makes the model available in a
Widely used environment, namely the web platform.

3. More Control

We are currently using this implementation to examine the bound-
aries of the model for web application programming. Thus far we
to-day

y
web applications. Firt, thee is 1 way to control what happens
with the shared data, Le. we do not want everyone 10 see, create,
update and delete all data. Second, there is no way to partition the.
state in such way that the client can decide to only access a part of
the data. By allowing to refrieve and synchronize only the neces-
sary tbe

Major research questions per work package

“Does our technology help stakeholders make the leap towards rich client tiers with offline
and collaborative functionality, and server tiers capable of handling global scales?”

WPO - Project management

(VUB - KUL)

RIA Scalable Services
(@client focus) (@server focus)

WP1 - Tierless programming platform
(VUB - KUL)

B I B B —

WP2 - End-to-end eventual consistency

(VUB)

B R I B

WP3 - End-to-end application confinement
(KUL)

B I I B

WP4 - Migration and adoption
(KUL - VUB)

*

WP4 case

WP4 case

to what extent can tier splitting be automated?
how to debug application logic across tiers, and
third-party code?

how to support user-defined cloud types?
how to determine which data needs to be
replicated for a desired offline service level?

how to secure assets distributed across tiers, and
isolate them from untrusted code on the same tier?
how to track policy violations across tiers?

how to help developers renovate existing code?
how to help developers identify assets to secure?

demonstrations of technology on 4 synthetic cases

Valorization opportunities

still up-to-date?

PaaS SaaS Software- Consultants
Providers Providers Intensive
WP1: Tierless Programming Platform A.-Lucent HealthConnect| MobileVikings | AE
Bell YesPlan IOS Int.
Xenit
Up-nxt
WP2: End-to-end Eventual Consistency A.-Lucent HealthConnect| MobileVikings | AE
Bell YesPlan IOS Int.
Up-nxt
XAOP
WP3: End-to-end Application Confinement | IS4U Xenit NVISO
Up-nxt
XAQOP
WP4: Migration and Adoption [S4U NVISO
AE

based on your letters of intent

Administrativa

business cases
problems

‘A

confidentiality of

shared information

CONNECT, A Yespla
M@BILE
VIKINGS

xenit Xaop @

@ s

Alcatel-Lucent

ae IV

a1

o Prof. Elisa Gonzalez Boix: distribution
o Prof. Coen De Roover: program analysis
o Prof. Frank Piessens: security

Vrije
Universiteit
Brussel

KATHOLIEKE UNIVERSITEIT

LEUVEN

technology

demonstrators

SBO economic template - version 2014

RULES OF PROCEDURE AND CONFIDENTIALITY AGREEMENT OF THE SUPERVISORY
COMMITTEE

RESEARCH PROJECT: SBO Tearless

“Secure Coordination of Rich Internet Application Tiers”

IWT-150040 Strategic Basic Research

1. Objective of the Supervisory Committee

Vrije Universiteit Brussel and KU Leuven (hereafter collectively referred to as the ‘Research
Partners'), have submitted a project proposal entitled ‘Secure Coordination of Rich Internet
Application Tiers’ within the framework of the 2014-2015 Strategic Basic Research Programme (S80)
of IWT-Flanders. This project proposal was approved by IWT-Flanders (the approved project proposal
hereafter referred to as the ‘Project’) and an agreement was concluded between IWT-Flanders and
the Research Partners regarding the Project (hereafter referred to as the ‘Basic Agreement’).

In implementation of the Basic Agreement, the Research Partners are seeking to assemble a
Supervisory Committee. The purpose of this Supervisory Committee will be to serve as a sounding
board during project implementation and to provide the Research Partners with feedback on the
relevance of the valorisation potential of their research as well as related advice, recommendations
and guidance. The Supervisory Committee will also examine possibilities concerning the industrial
implementation of the project results in their business operations.

The Undersigned has expressed its desire to take part in the Supervisory Committee and as such to
provide input to help achieve the aforementioned purpose of the Supervisory Committee
(hereinafter referred to as the ‘Objective’).

The Vrije Universiteit Brussel is responsible for ensuring that each member of the Supervisory
Committee signs the Rules of Procedure and confidentiality agreement.

2. Definitions

“Research Partners': the institutions of the consortium that submitted the SBO Research Project
Tearless to the IWT and which are the beneficiaries in the Project.

‘Steering Group': the senior management body of the consortium, as set out in Article 2 of the ‘SBO
Cooperation Agreement'. The Steering Group monitors and manages all aspects of the Research
Project ranging from research to valorisation, as agreed in the SBO Cooperation Agreement. The
Steering Group is presided over by the Project Coordinator.

“Confidential Information’: refers to all proprietary or confidential information that is not generally
available to the public (whether recorded on a storage medium or not), that is disclosed or made
available to the Supervisory Committee within the framework of the Objective and which relates to
the activities of a Research Partner or member of the Supervisory Committee (or the activities of its
suppliers or clients), including but not limited to expertise, trade secrets, inventions, technology,
research results (including those of the Project), technical information, statistical data, techniques,
methods, practices, processes, models, experimental setups, protocols, concepts, plans, drawings,

Rules of Procedure - SBO Tearless Page 1

we will meet twice a year

2016

Ql Q2 Q3
WPO

WP1 D1.1.2

D1.1.3
WP2
WP3
WP4

D2.1.1
D3.2

Q4

DO0.1.1
D1.2.1

D4.4.1

2017
Q5 Q6 Q7

D1.3.1

D2.1.2
D3.2.1 D3.1.1

rules of procedure

Q8 Q9
DO0.1.2

Q10

D2.1.3
D3.1.3

D4.1.1
D4.4.2

D2.2.1
D3.1.2
D4.1.2

2018

0@ < [em]
S
Tavless
© About <
® Work Packages v

Work Packages

WP1: Tierless Programming
Platform

WP2: End-to-end Eventual
Consistency

WP3: End-to-end Application
Confinement

WP4: Migration and Adoption

© Dissemination <

(=]

E4

softvub.ac.be [©

WP1: Tierless Programming Platform

We propose to leverage ilation (i.e., 3¢ to realize tierless

in ipt, an existing g I-p language. This relieves developers from having
to align different client-side and server-side technologies, but without requiring an investment in a new
tierless language. In this approach to tierless ing, web ions are as ordinary
single-tiered programs using the existing tools for a general-purpose language. Once tested and
validated, the single-tiered program is automatically split into server and client tiers. This will require a
minimal amount of annotations from developers (e.g., @client). Program analysis technology can then
uncover the implicit dependencies between annotated code, thus determining the border along which
the single-tiered program can be split. To realize the tier split, shared state and function calls will be
replaced by the i istril i . In order to realize this vision we will
require an expressive static representation of the program’s dependencies. To this end we will rely on
existing work done at VUB/SOFT on abstract interpretation of JavaScript, which will result in a state
graph that represents all possible behaviors of the program. The state graph will be accessible to the
transpiler (and other tools) by means of a unified static meta-level architecture.

Activities and their deliverables

Activity 1.1: Meta-level architecture
 Deliverable 1.1.1 Static meta-level architecture
« Deliverable 1.1.2 Dynamic meta-level architecture

Activity 1.2: Transpiler for tierless programs
« Deliverable 1.2.1 Transpilation 1 - Simple
« Deliverable 1.2.2 Transpilation 2 - Open transpilation process

Activity 1.3: Debugger for tierless programs
« Deliverable 1.3.1 Cross-tier debugger
« Deliverable 1.3.2 Shape-shifting ible debugger

soft.vub.ac.be/tearless/

Q12
DO0.1.3

Q13

D2.2.2
D3.3.1

D4.2
D4.4.3

deliverables will be made available on website

2019
Q15 Qle
D0.2.1 DO0.1.4

Ql4

D1.3.2

D2.3
D3.3.2

D4.3
D4.4.4

IHANK YOou

Agenda for the remainder of the meeting

o 15:00 Technical presentation about the state of the art

o in securing RIAs (Philippe De Ryck, KUL)

o in implementing offline functionality for RIAs (Joeri De Koster, VUB)
o 16:30 Reception with networking opportunities

