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Recent security technology on the web

Web Browser Web Server

HTTP Request

HTTP Response

2

Security
PolicyPolicy enforcement

in the browser



Overview
§ Basic security model of the Web

§ #1 Securing browser-server communication

§ #2 Mitigating script injection attacks

§ #3 Framing content securely

§ Wrap-up
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Basic security model of the web
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Introduction
§ Basic security policy for the web:
§ Same-Origin Policy

§ What does it mean for scripts running on 
your page?

§ What does it mean for frames included 
in your page?
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Two basic composition techniques

<html><body>
…
<script src=“http://3rdparty.com/script.js”></script>
…
</body></html>

<html><body>
…
<iframe src=“http://3rdparty.com/frame.html”></iframe>
…
</body></html>

3rd party

3rd party

Script inclusion

Iframe integration
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Securing browser-server 
communication
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Overview
§ Attacks:
§ Session hijacking
§ SSL Stripping

§ Countermeasures:
§ Use of SSL/TLS
§ Secure flag for session cookies
§ HSTS header
§ Public Key Pinning
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Network attacks: Session hijacking

Web Browser Web Server

HTTP Request

HTTP Request

HTTP Response

HTTP Response

Cookie: 
PREF=ID=766awg-VZ

Cookie: 
PREF=ID=766awg-VZ

!
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HTTPS to the rescue…

Web Browser Web Server

HTTP Request

HTTP Response
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Problem cured?
§ TLS usage statistics:
§ 0.78% of active domains use TLS (with valid SSL 

certificate)
§ For Alexa top 1 million: 27.86% use TLS

§ Remaining problems:
§ Mixed use of HTTPS/HTTP and session cookies
§ Mixed content websites
§ SSL Stripping attacks

Internet SSL Survey 2010, Qualys
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Mixed use of HTTPS/HTTP
§ Cookies are bound to domains, not origins

§ By default, cookies are sent both over 
HTTPS and HTTP

§ Any request to your domain over HTTP 
leaks the (session) cookies…

!
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Secure flag for cookies
§ Issued at cookie creation (HTTP response)

§ Set-Cookie: PREF=766awg-VZ; 
Domain=yourdomain.com; Secure

§ If set, the cookie is only sent over an encrypted 
channel

§ Should be enabled by default for your session 
cookies!
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HTTP to HTTPS bootstrapping

Web Browser Web Server

HTTP Request

HTTP Response

HTTPS Request

HTTPS Response

Redirect to HTTPS
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HTTP to HTTPS bootstrapping
§ HTTP 301/302 response

§ Location header redirects browser to the resource over 
HTTPS

§ Location: https://mysite.com/

§ Meta refresh
§ Meta-tag in HEAD of HTML page
§ <meta http-equiv="refresh" 

content="0;URL='https://mysite.com/'">

§ Via JavaScript
§ document.location = “https://mysite.com”
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Network attacks: SSL Stripping

Web Browser Web Server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Moxie Marlinspike, BlackHat DC 2009

HTTP Request

HTTP Response

HTTPS Request

HTTPS Response

Redirect to HTTPS

!
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Strict Transport Security (HSTS)
§ Issued by the HTTP response header
§ Strict-Transport-Security: max-age=60000

§ If set, the browser is instructed to visit this 
domain only via HTTPS
§ No HTTP traffic to this domain will leave the 

browser

§ Optionally, also protect all subdomains
§ Strict-Transport-Security: max-age=60000; 

includeSubDomains
17



HSTS: state-of-practice
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But can I trust the CAs ?
§ Comodo (March 2011)

§ 9 fraudelent SSL certificates

§ Diginotar (July 2011)
§ Wildcard certificates for Google, Yahoo!, Mozilla, 

WordPress, …

§ Breaches at StartSSL (June 2011) and 
GlobalSign (Sept 2012) reported unsuccessful

§ …

!
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Public Key Pinning (HPKP)
§ Issued as HTTP response header
§ Public-Key-Pins: max-age=500; 

pin-sha1="4n972HfV354KP560yw4uqe/baXc="; 
pin-sha1="IvGeLsbqzPxdI0b0wuj2xVTdXgc="

§ Freezes the certificate by pushing a 
fingerprint of (parts of) the certificate chain 
to the browser
§ Options: max-age, includeSubdomains, report-uri
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HPKP: state-of-practice

21



Recap: Securing browser-server communication
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§ Use of TLS
§ be aware of mixed-content inclusions!

§ Secure flag for cookies
§ to protect cookies against leaking over HTTP

§ HSTS header
§ to force TLS for all future connections

§ Public Key Pinning 
§ to protect against fraudulent certificates



#2 Mitigating script injection 
attacks
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Overview
§ Attack:
§ Cross-Site Scripting (XSS)

§ Countermeasures:
§ HttpOnly flag for session cookies
§ Content Security Policy (CSP)
§ Subresrouce Integrity (SRI)
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Example: Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script
into the persistent storage of the vulnerable server

Regular http request

Http response containing
script as part of executable content

P

Attacker

P

!
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HttpOnly flag for cookies
§ Issued at cookie creation (HTTP response)

§ Set-Cookie: PREF=766awg-VZ; Domain=yourdomain.com; Secure; 
HttpOnly

§ If set, the cookie is not accessible via DOM
§ JavaScript can not read or write this cookie

§ Mitigates XSS impact on session cookies
§ Protects against hijacking and fixation

§ Should be enabled by default for your session cookies!
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Content Security Policy (CSP)
§ Issued as HTTP response header

§ Content-Security-Policy: script-src 'self'; object-src
'none'

§ Specifies which resources are allowed to be 
loaded as part of your page

§ Extremely promising as an additional layer of 
defense against script injection
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CSP set of directives
§ There are a whole set of directives
§ Here we discuss CSP v1.1 (February 11, 2014)

§ default-src
§ Takes a sourcelist as value
§ Default for all resources, unless overridden by 

specific directives
§ Only allowed resources are loaded
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CSP source lists
§ Space delimited list of sources

§ ‘self’
§ ‘none’
§ origin(s)

§ Examples
• https://mydomain.com
• https://mydomain.com:443
• http://134.58.40.10
• https://*.mydomain.com
• https:
• *://mydomain.com
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CSP set of directives (2)
§ script-src

§ From which sources, scripts are allowed to be included

§ object-src
§ Flash and other plugins

§ style-src
§ stylesheets

§ img-src
§ images

§ media-src
§ sources of video and audio
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CSP set of directives (3)
§ child-src

§ list of origins allowed to be embedded as frames
§ replaces the deprecated frame-src directive

§ font-src
§ web fonts

§ connect-src
§ To which origins can you connect (e.g. XHR, websockets)

§ frame-options
§ Control framing of the page

§ sandbox
§ Trigger sandboxing attribute of embeded iframes
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CSP requires sites to “behave”
§ Inline scripts and CSS is not allowed
§ All scripts need to be externalized in dedicated JS 

files
§ All style directives need to be externalized in 

dedicated style files
§ Clean code separation

§ The use of eval is not allowed
§ To prevent unsafe string (e.g. user input) to be 

executed
32



<script>
function	runMyScript()	{
alert('My	alert');
}
</script>

<a	href="#"	onClick="runMyScript();">
This	link	shows	an	alert!</a>

Example: inline scripts

<script>
function	runMyScript()	{
alert('My	alert');
}
</script>

<a	href="#"	onClick="runMyScript();">
This	link	shows	an	alert!</a>

page.html
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Example: externalized scripts

<script	src="myscript.js"></script>
<a	href="#"	id="myLink">This	link	shows	an	alert!</a>

page.html

function	runMyScript()	{
alert('My	alert');
}
document.addEventListener('DOMContentReady',	
function	()	{
document.getElementById('myLink')

.addEventListener('click',	runMyScript);
});

myscript.js
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External JS

JavaScript code

Binding to page



Insecure relaxations, but be careful!
§ To temporary allow inline scripts
§ Content-Security-Policy: script-src 'self' 'unsafe-

inline'

§ To temporary allow eval
§ Content-Security-Policy: script-src 'self' 'unsafe-

inline' 'unsafe-eval'

§ To temporary allow inline style directives
§ Content-Security-Policy: style-src 'self' 'unsafe-

inline'
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Be 
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Script/style nonces and hashes
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§ To allow controlled inline-scripts:
§ Mark your script with a nonce

Content-Security-Policy: default-src 'self'; script-src 'self' 
https://example.com 'nonce-Nc3n83cnSAd3wc3Sasdfn939hc3‘
<script nonce="Nc3n83cnSAd3wc3Sasdfn939hc3">
alert("Allowed because nonce is valid.")
</script>

§ Add a hash of your inline script to the policy
Content-Security-Policy: script-src 'sha256-
YWIzOWNiNzJjNDRlYzc4MTgwMDhmZDlkOWI0NTAyMjgyY2MyMWJl
MWUyNjc1ODJlYWJhNjU5MGU4NmZmNGU3OAo='

<script>alert('Hello, world.');</script>
sha256

CSP 1.1



CSP reporting feature
§ CSP reports violations back to the server 

owner
§ server owner gets insides in actual attacks

• i.e. violations against the supplied policy
§ allows to further fine-tune the CSP policy 

• e.g. if the policy is too restrictive

§ report-uri directive
§ report-uri /my-csp-reporting-handler
§ URI to which the violation report will be posted
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Example violation report

Content-Security-Policy:	script-src 'self'	https://apis.google.com;	
report-uri http://example.org/my_amazing_csp_report_parser

{
"csp-report":	{
"document-uri":	"http://example.org/page.html",
"referrer":	"http://evil.example.com/",
"blocked-uri":	"http://evil.example.com/evil.js",
"violated-directive":	"script-src 'self'	https://apis.google.com",
"original-policy":	"script-src 'self'	https://apis.google.com;	report-

uri http://example.org/my_amazing_csp_report_parser"
}
}

CSP violation report

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)38



CSP Reporting: one step further
§ Apart from reporting violations via the 

report-uri directive
§ CSP can also run in report only mode
§ Content-Security-Policy-Report-Only: default-src: 

'none'; script-src 'self'; report-uri /my-csp-reporting-
handler

§ Violation are reported
§ Policies are not enforced
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Some CSP examples
§ Examples:
§ Mybank.net lockdown
§ SSL only
§ Social media integration
§ Facebook snapshot

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)40



Example: mybank.net lockdown
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§ Scripts, images, stylesheets
§ from a CDN at https://cdn.mybank.net

§ XHR requests 
§ Interaction with the mybank APIs at https://api.mybank.com

§ Iframes
§ From the website itself

§ No flash, java, ….

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)

Content-Security-Policy: default-src 'none'; 
script-src https://cdn.mybank.net; 
style-src https://cdn.mybank.net; 
img-src https://cdn.mybank.net; 
connect-src https://api.mybank.com; 
child-src 'self'



Content-Security-Policy: default-src https: ; 
script-src https: 'unsafe-inline'; 
style-src https: 'unsafe-inline'

Example: SSL only
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§ Can we ensure to only include HTTPS 
content in our website?

§ Obviously, this should only be the first 
step, not the final one!

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)



Content-Security-Policy: script-src https://apis.google.com 
https://platform.twitter.com; 
child-src https://plusone.google.com https://facebook.com 
https://platform.twitter.com

Example: social media integration
§ Google +1 button

§ Script from https://apis.google.com
§ Iframe from https://plusone.google.com

§ Facebook
§ Iframe from https://facebook.com

§ Twitter tweet button
§ Script from https://platform.twitter.com
§ Iframe from https://platform.twitter.com

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)43



X-WebKit-CSP:	default-src *;	
script-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com*.spotilocal.com:*	
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'	
'unsafe-eval'	https://*.akamaihd.net	http://*.akamaihd.net;style-
src	*	'unsafe-inline';	
connect-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net
*.spotilocal.com:*	https://*.akamaihd.net	ws://*.facebook.com:*	
http://*.akamaihd.net;

X-WebKit-CSP:	default-src *;	
script-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com*.spotilocal.com:*	
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'	
'unsafe-eval'	https://*.akamaihd.net	http://*.akamaihd.net;style-
src	*	'unsafe-inline';	
connect-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net
*.spotilocal.com:*	https://*.akamaihd.net	ws://*.facebook.com:*	
http://*.akamaihd.net;

Example: Facebook snapshot
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CSP 1.0: state-of-practice
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http://caniuse.com/#search=csp



Third-party JavaScript is everywhere

46

§ Advertisements
§ Adhese ad network

§ Social web
§ Facebook Connect
§ Google+
§ Twitter
§ Feedsburner

§ Tracking
§ Scorecardresearch

§ Web Analytics
§ Yahoo! Web Analytics
§ Google Analytics

§ …
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Number of remote script providers per site

48

• 88.45% includes 
at least 1 remote 
JavaScript library

• 2 out of 3 sites 
relies on 5 or 
more script 
providers

• 1 site includes up 
to 295 remote 
script providers

Source: Nick Nikiforakis et. al. You are what you include: 
Large-scale evaluation of remote JavaScript inclusions. CCS 2012



Most popular JavaScript libraries and APIs
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Offered service JavaScript file %  Alexa Top 10K

Web analytics www.google-analytics.com/ga.js 68,37%

Dynamic Ads pagead2.googlesyndication.com/pagead/show_ads.js 23,87%

Web analytics www.google-analytics.com/urchin.js 17,32%

Social Networking connect.facebook.net/en_us/all.js 16,82%

Social Networking platform.twitter.com/widgets.js 13,87%

Social Networking & Web 
analytics

s7.addthis.com/js/250/addthis_widget.js 12,68%

Web analytics & Tracking edge.quantserve.com/quant.js 11,98%

Market Research b.scorecardresearch.com/beacon.js 10,45%

Google Helper Functions www.google.com/jsapi 10,14%

Web analytics ssl.google-analytics.com/ga.js 10,12%

Source: Nick Nikiforakis et. al. You are what you include: 
Large-scale evaluation of remote JavaScript inclusions. CCS 2012



Subresource Integrity
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§ Either you trust a CDN, or you host it 
yourself

§ Welcome Subresource Integrity (SRI)
§ W3C Candidate Recommendation since 

November 12, 2015 

<script src="https://code.jquery.com/jquery-2.1.3.min.js"
integrity=“sha256-TXuiaAJuML3…uMLTXuiaAJ3”
crossorigin=“anonymous”></script>



Subresource Integrity
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§ Allows you to specify a hash of an external resource
§ Using the integrity attribute on script or link tags

§ Browsers verify this hash before loading the file
§ Refuse to load the file if the hash does not match

§ SRI supports the specification of multiple hashes
§ The strongest one available will be used by the browser

<script src=”myapplication.js” 
integrity=“sha256-… sha512-… ”>

</script>

<link href=“myapp.css” type=“text/css”
integrity=“sha384-… sha512-…” />



SRI: state-of-practice
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Recap: Mitigating script injection attacks
§ HttpOnly flag for session cookies

§ To protect cookies against hijacking and fixation from 
JavaScript

§ Content Security Policy (CSP)
§ Domain-level control over resources to be included
§ Most promising infrastructural technique against XSS
§ Interesting reporting-only mode

§ Subresource integrity (SRI)
§ Guarantee the integrity of scripts delivered via third-parties
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#3 Framing content securely
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Overview
§ Attacks:
§ Click-jacking
§ Same domain XSS

§ Countermeasures:
§ X-Frame-Options / frame-ancestors
§ HTML5 sandbox attribute for iframes
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Click-jacking

Source: “Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites” (W2SP 2010)

!
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Unsafe countermeasures
§ A lot of unsafe ways exist to protect against 

clickjacking
§ if (top.location != location)

top.location = self.location;
§ if (parent.location != self.location) 

parent.location = self.location;

§ Can easily be defeated by 
§ Script disabling/sandboxing techniques
§ Frame navigation policies
§ XSS filters in browsers

Source: “Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites” (W2SP 2010) 57



X-Frame-Options
§ Issued by the HTTP response header
§ X-Frame-Options: SAMEORIGIN
§ Indicates if and by who the page might be 

framed

§ 3 options:
§ DENY
§ SAMEORIGIN
§ ALLOW-FROM uri
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XFO has been integrated in CSP
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§ New CSP directive: frame-ancestors
§ Content-Security-Policy: frame-ancestors 

https://partnerA.com https://partnerB.com

§ In contrast to X-Frame-Options, a 
sourcelist is allowed
§ Common advice is to tailor per partner

CSP 1.1



Limitations of framing content in same origin
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§ Iframe integration provides a good 
isolation mechanism
§ Each origin runs in its own security context, 

thanks to the Same-Origin Policy
§ Isolation only holds if outer and inner frame 

belong to a different origin

§ Hard to isolate untrusted content within 
the same origin

!



HTML5 sandbox attribute
§ Expressed as attribute of the iframe tag
§ <iframe src= "/untrusted-path/index.html" 

sandbox></iframe>
§ <iframe src="/untrusted-path/index.html" sandbox= 

"allow-scripts"></iframe>

§ Level of Protection
§ Coarse-grained sandboxing
§ ‘SOP but within the same domain’
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Default sandbox behavior
§ Plugins are disabled

§ Frame runs in a unique origin

§ Scripts can not execute

§ Form submission is not allowed

§ Top-level context can not be navigated

§ Popups are blocked

§ No access to raw mouse movements data
62



Sandbox relaxation directives
§ Relaxations:

§ allow-forms
§ allow-popups
§ allow-pointer-lock
§ allow-same-origin
§ allow-scripts
§ allow-top-navigation

§ Careful!
§ Combining allow-scripts & allow-same-origin voids the sandbox 

isolation

§ Plugins can not be re-enabled
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HTML5 sandbox
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Sandbox has been integrated in CSP
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§ New CSP directive: sandbox
§ Content-Security-Policy: sandbox

§ Content-Security-Policy: sandbox allow-scripts

§ Similar options apply:
§ allow-forms
§ allow-pointer-lock
§ allow-popups
§ allow-same-origin
§ allow-scripts
§ allow-top-navigation

CSP 1.1



Recap: Framing content securely
§ CSP: Frame ancestors
§ Robust defense against click-jacking
§ Any state-changing page should be protected

§ CSP: Sandbox attribute
§ Coarse-grained sandboxing of resources and 

JavaScript
§ Interesting enabler for security architectures
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Wrap-up
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Conclusion

68

§ Whole new range of security features
§ Browser-side enforcement, under control of the server

§ NOT a replacement of secure coding 
guidelines, but an interesting additional line of 
defense for
§ Legacy applications
§ Newly deployed applications

§ And most probably, there is many more to 
come in the next few years…



Primer on Client-Side Web Security
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§ Covers the landscape of 
client-side Web security
§ State-of-the-art in web 

security
§ State-of-practice on the Web
§ Recent research and 

standardization activities
§ Security best practices per 

category
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