
Securing Rich Internet Applications:
Overview of best practices

Lieven Desmet – iMinds-DistriNet, KU Leuven
Lieven.Desmet@cs.kuleuven.be

`



Recent security technology on the web

Web Browser Web Server

HTTP Request

HTTP Response

2

Security
PolicyPolicy enforcement

in the browser



Overview
§ Basic security model of the Web

§ #1 Securing browser-server communication

§ #2 Mitigating script injection attacks

§ #3 Framing content securely

§ Wrap-up

3



Basic security model of the web

4



Introduction
§ Basic security policy for the web:
§ Same-Origin Policy

§ What does it mean for scripts running on 
your page?

§ What does it mean for frames included 
in your page?

5



Two basic composition techniques

<html><body>
…
<script src=“http://3rdparty.com/script.js”></script>
…
</body></html>

<html><body>
…
<iframe src=“http://3rdparty.com/frame.html”></iframe>
…
</body></html>

3rd party

3rd party

Script inclusion

Iframe integration

6



Securing browser-server 
communication

7



Overview
§ Attacks:
§ Session hijacking
§ SSL Stripping

§ Countermeasures:
§ Use of SSL/TLS
§ Secure flag for session cookies
§ HSTS header
§ Public Key Pinning

8



Network attacks: Session hijacking

Web Browser Web Server

HTTP Request

HTTP Request

HTTP Response

HTTP Response

Cookie: 
PREF=ID=766awg-VZ

Cookie: 
PREF=ID=766awg-VZ

!

9



HTTPS to the rescue…

Web Browser Web Server

HTTP Request

HTTP Response

10



Problem cured?
§ TLS usage statistics:
§ 0.78% of active domains use TLS (with valid SSL 

certificate)
§ For Alexa top 1 million: 27.86% use TLS

§ Remaining problems:
§ Mixed use of HTTPS/HTTP and session cookies
§ Mixed content websites
§ SSL Stripping attacks

Internet SSL Survey 2010, Qualys

11



Mixed use of HTTPS/HTTP
§ Cookies are bound to domains, not origins

§ By default, cookies are sent both over 
HTTPS and HTTP

§ Any request to your domain over HTTP 
leaks the (session) cookies…

!

12



Secure flag for cookies
§ Issued at cookie creation (HTTP response)

§ Set-Cookie: PREF=766awg-VZ; 
Domain=yourdomain.com; Secure

§ If set, the cookie is only sent over an encrypted 
channel

§ Should be enabled by default for your session 
cookies!

13



HTTP to HTTPS bootstrapping

Web Browser Web Server

HTTP Request

HTTP Response

HTTPS Request

HTTPS Response

Redirect to HTTPS

14



HTTP to HTTPS bootstrapping
§ HTTP 301/302 response

§ Location header redirects browser to the resource over 
HTTPS

§ Location: https://mysite.com/

§ Meta refresh
§ Meta-tag in HEAD of HTML page
§ <meta http-equiv="refresh" 

content="0;URL='https://mysite.com/'">

§ Via JavaScript
§ document.location = “https://mysite.com”

15



Network attacks: SSL Stripping

Web Browser Web Server

HTTP Request

HTTP Response

HTTP Request

HTTP Response

Moxie Marlinspike, BlackHat DC 2009

HTTP Request

HTTP Response

HTTPS Request

HTTPS Response

Redirect to HTTPS

!

16



Strict Transport Security (HSTS)
§ Issued by the HTTP response header
§ Strict-Transport-Security: max-age=60000

§ If set, the browser is instructed to visit this 
domain only via HTTPS
§ No HTTP traffic to this domain will leave the 

browser

§ Optionally, also protect all subdomains
§ Strict-Transport-Security: max-age=60000; 

includeSubDomains
17



HSTS: state-of-practice

18



But can I trust the CAs ?
§ Comodo (March 2011)

§ 9 fraudelent SSL certificates

§ Diginotar (July 2011)
§ Wildcard certificates for Google, Yahoo!, Mozilla, 

WordPress, …

§ Breaches at StartSSL (June 2011) and 
GlobalSign (Sept 2012) reported unsuccessful

§ …

!

19



Public Key Pinning (HPKP)
§ Issued as HTTP response header
§ Public-Key-Pins: max-age=500; 

pin-sha1="4n972HfV354KP560yw4uqe/baXc="; 
pin-sha1="IvGeLsbqzPxdI0b0wuj2xVTdXgc="

§ Freezes the certificate by pushing a 
fingerprint of (parts of) the certificate chain 
to the browser
§ Options: max-age, includeSubdomains, report-uri

20



HPKP: state-of-practice

21



Recap: Securing browser-server communication

22

§ Use of TLS
§ be aware of mixed-content inclusions!

§ Secure flag for cookies
§ to protect cookies against leaking over HTTP

§ HSTS header
§ to force TLS for all future connections

§ Public Key Pinning 
§ to protect against fraudulent certificates



#2 Mitigating script injection 
attacks

23



Overview
§ Attack:
§ Cross-Site Scripting (XSS)

§ Countermeasures:
§ HttpOnly flag for session cookies
§ Content Security Policy (CSP)
§ Subresrouce Integrity (SRI)

24



Example: Stored or persistent XSS

Victim

Vulnerable server

HTTP response

HTTP request injecting a script
into the persistent storage of the vulnerable server

Regular http request

Http response containing
script as part of executable content

P

Attacker

P

!

25



HttpOnly flag for cookies
§ Issued at cookie creation (HTTP response)

§ Set-Cookie: PREF=766awg-VZ; Domain=yourdomain.com; Secure; 
HttpOnly

§ If set, the cookie is not accessible via DOM
§ JavaScript can not read or write this cookie

§ Mitigates XSS impact on session cookies
§ Protects against hijacking and fixation

§ Should be enabled by default for your session cookies!

26



Content Security Policy (CSP)
§ Issued as HTTP response header

§ Content-Security-Policy: script-src 'self'; object-src
'none'

§ Specifies which resources are allowed to be 
loaded as part of your page

§ Extremely promising as an additional layer of 
defense against script injection

27



CSP set of directives
§ There are a whole set of directives
§ Here we discuss CSP v1.1 (February 11, 2014)

§ default-src
§ Takes a sourcelist as value
§ Default for all resources, unless overridden by 

specific directives
§ Only allowed resources are loaded

28



CSP source lists
§ Space delimited list of sources

§ ‘self’
§ ‘none’
§ origin(s)

§ Examples
• https://mydomain.com
• https://mydomain.com:443
• http://134.58.40.10
• https://*.mydomain.com
• https:
• *://mydomain.com

29



CSP set of directives (2)
§ script-src

§ From which sources, scripts are allowed to be included

§ object-src
§ Flash and other plugins

§ style-src
§ stylesheets

§ img-src
§ images

§ media-src
§ sources of video and audio

30



CSP set of directives (3)
§ child-src

§ list of origins allowed to be embedded as frames
§ replaces the deprecated frame-src directive

§ font-src
§ web fonts

§ connect-src
§ To which origins can you connect (e.g. XHR, websockets)

§ frame-options
§ Control framing of the page

§ sandbox
§ Trigger sandboxing attribute of embeded iframes

31



CSP requires sites to “behave”
§ Inline scripts and CSS is not allowed
§ All scripts need to be externalized in dedicated JS 

files
§ All style directives need to be externalized in 

dedicated style files
§ Clean code separation

§ The use of eval is not allowed
§ To prevent unsafe string (e.g. user input) to be 

executed
32



<script>
function	runMyScript()	{
alert('My	alert');
}
</script>

<a	href="#"	onClick="runMyScript();">
This	link	shows	an	alert!</a>

Example: inline scripts

<script>
function	runMyScript()	{
alert('My	alert');
}
</script>

<a	href="#"	onClick="runMyScript();">
This	link	shows	an	alert!</a>

page.html

33



Example: externalized scripts

<script	src="myscript.js"></script>
<a	href="#"	id="myLink">This	link	shows	an	alert!</a>

page.html

function	runMyScript()	{
alert('My	alert');
}
document.addEventListener('DOMContentReady',	
function	()	{
document.getElementById('myLink')

.addEventListener('click',	runMyScript);
});

myscript.js

34

External JS

JavaScript code

Binding to page



Insecure relaxations, but be careful!
§ To temporary allow inline scripts
§ Content-Security-Policy: script-src 'self' 'unsafe-

inline'

§ To temporary allow eval
§ Content-Security-Policy: script-src 'self' 'unsafe-

inline' 'unsafe-eval'

§ To temporary allow inline style directives
§ Content-Security-Policy: style-src 'self' 'unsafe-

inline'

35

Be 
careful!



Script/style nonces and hashes

36

§ To allow controlled inline-scripts:
§ Mark your script with a nonce

Content-Security-Policy: default-src 'self'; script-src 'self' 
https://example.com 'nonce-Nc3n83cnSAd3wc3Sasdfn939hc3‘
<script nonce="Nc3n83cnSAd3wc3Sasdfn939hc3">
alert("Allowed because nonce is valid.")
</script>

§ Add a hash of your inline script to the policy
Content-Security-Policy: script-src 'sha256-
YWIzOWNiNzJjNDRlYzc4MTgwMDhmZDlkOWI0NTAyMjgyY2MyMWJl
MWUyNjc1ODJlYWJhNjU5MGU4NmZmNGU3OAo='

<script>alert('Hello, world.');</script>
sha256

CSP 1.1



CSP reporting feature
§ CSP reports violations back to the server 

owner
§ server owner gets insides in actual attacks

• i.e. violations against the supplied policy
§ allows to further fine-tune the CSP policy 

• e.g. if the policy is too restrictive

§ report-uri directive
§ report-uri /my-csp-reporting-handler
§ URI to which the violation report will be posted

37



Example violation report

Content-Security-Policy:	script-src 'self'	https://apis.google.com;	
report-uri http://example.org/my_amazing_csp_report_parser

{
"csp-report":	{
"document-uri":	"http://example.org/page.html",
"referrer":	"http://evil.example.com/",
"blocked-uri":	"http://evil.example.com/evil.js",
"violated-directive":	"script-src 'self'	https://apis.google.com",
"original-policy":	"script-src 'self'	https://apis.google.com;	report-

uri http://example.org/my_amazing_csp_report_parser"
}
}

CSP violation report

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)38



CSP Reporting: one step further
§ Apart from reporting violations via the 

report-uri directive
§ CSP can also run in report only mode
§ Content-Security-Policy-Report-Only: default-src: 

'none'; script-src 'self'; report-uri /my-csp-reporting-
handler

§ Violation are reported
§ Policies are not enforced

39



Some CSP examples
§ Examples:
§ Mybank.net lockdown
§ SSL only
§ Social media integration
§ Facebook snapshot

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)40



Example: mybank.net lockdown

41

§ Scripts, images, stylesheets
§ from a CDN at https://cdn.mybank.net

§ XHR requests 
§ Interaction with the mybank APIs at https://api.mybank.com

§ Iframes
§ From the website itself

§ No flash, java, ….

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)

Content-Security-Policy: default-src 'none'; 
script-src https://cdn.mybank.net; 
style-src https://cdn.mybank.net; 
img-src https://cdn.mybank.net; 
connect-src https://api.mybank.com; 
child-src 'self'



Content-Security-Policy: default-src https: ; 
script-src https: 'unsafe-inline'; 
style-src https: 'unsafe-inline'

Example: SSL only

42

§ Can we ensure to only include HTTPS 
content in our website?

§ Obviously, this should only be the first 
step, not the final one!

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)



Content-Security-Policy: script-src https://apis.google.com 
https://platform.twitter.com; 
child-src https://plusone.google.com https://facebook.com 
https://platform.twitter.com

Example: social media integration
§ Google +1 button

§ Script from https://apis.google.com
§ Iframe from https://plusone.google.com

§ Facebook
§ Iframe from https://facebook.com

§ Twitter tweet button
§ Script from https://platform.twitter.com
§ Iframe from https://platform.twitter.com

Based on “HTML5Rocks: An introduction to Content Security Policy” (Mike West)43



X-WebKit-CSP:	default-src *;	
script-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com*.spotilocal.com:*	
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'	
'unsafe-eval'	https://*.akamaihd.net	http://*.akamaihd.net;style-
src	*	'unsafe-inline';	
connect-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net
*.spotilocal.com:*	https://*.akamaihd.net	ws://*.facebook.com:*	
http://*.akamaihd.net;

X-WebKit-CSP:	default-src *;	
script-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net *.google-
analytics.com *.virtualearth.net *.google.com*.spotilocal.com:*	
chrome-extension://lifbcibllhkdhoafpjfnlhfpfgnpldfl 'unsafe-inline'	
'unsafe-eval'	https://*.akamaihd.net	http://*.akamaihd.net;style-
src	*	'unsafe-inline';	
connect-src https://*.facebook.com	http://*.facebook.com	
https://*.fbcdn.net	http://*.fbcdn.net	*.facebook.net
*.spotilocal.com:*	https://*.akamaihd.net	ws://*.facebook.com:*	
http://*.akamaihd.net;

Example: Facebook snapshot

44



CSP 1.0: state-of-practice

45
http://caniuse.com/#search=csp



Third-party JavaScript is everywhere

46

§ Advertisements
§ Adhese ad network

§ Social web
§ Facebook Connect
§ Google+
§ Twitter
§ Feedsburner

§ Tracking
§ Scorecardresearch

§ Web Analytics
§ Yahoo! Web Analytics
§ Google Analytics

§ …



47



Number of remote script providers per site

48

• 88.45% includes 
at least 1 remote 
JavaScript library

• 2 out of 3 sites 
relies on 5 or 
more script 
providers

• 1 site includes up 
to 295 remote 
script providers

Source: Nick Nikiforakis et. al. You are what you include: 
Large-scale evaluation of remote JavaScript inclusions. CCS 2012



Most popular JavaScript libraries and APIs

49

Offered service JavaScript file %  Alexa Top 10K

Web analytics www.google-analytics.com/ga.js 68,37%

Dynamic Ads pagead2.googlesyndication.com/pagead/show_ads.js 23,87%

Web analytics www.google-analytics.com/urchin.js 17,32%

Social Networking connect.facebook.net/en_us/all.js 16,82%

Social Networking platform.twitter.com/widgets.js 13,87%

Social Networking & Web 
analytics

s7.addthis.com/js/250/addthis_widget.js 12,68%

Web analytics & Tracking edge.quantserve.com/quant.js 11,98%

Market Research b.scorecardresearch.com/beacon.js 10,45%

Google Helper Functions www.google.com/jsapi 10,14%

Web analytics ssl.google-analytics.com/ga.js 10,12%

Source: Nick Nikiforakis et. al. You are what you include: 
Large-scale evaluation of remote JavaScript inclusions. CCS 2012



Subresource Integrity

50

§ Either you trust a CDN, or you host it 
yourself

§ Welcome Subresource Integrity (SRI)
§ W3C Candidate Recommendation since 

November 12, 2015 

<script src="https://code.jquery.com/jquery-2.1.3.min.js"
integrity=“sha256-TXuiaAJuML3…uMLTXuiaAJ3”
crossorigin=“anonymous”></script>



Subresource Integrity

51

§ Allows you to specify a hash of an external resource
§ Using the integrity attribute on script or link tags

§ Browsers verify this hash before loading the file
§ Refuse to load the file if the hash does not match

§ SRI supports the specification of multiple hashes
§ The strongest one available will be used by the browser

<script src=”myapplication.js” 
integrity=“sha256-… sha512-… ”>

</script>

<link href=“myapp.css” type=“text/css”
integrity=“sha384-… sha512-…” />



SRI: state-of-practice

52



Recap: Mitigating script injection attacks
§ HttpOnly flag for session cookies

§ To protect cookies against hijacking and fixation from 
JavaScript

§ Content Security Policy (CSP)
§ Domain-level control over resources to be included
§ Most promising infrastructural technique against XSS
§ Interesting reporting-only mode

§ Subresource integrity (SRI)
§ Guarantee the integrity of scripts delivered via third-parties

53



#3 Framing content securely

54



Overview
§ Attacks:
§ Click-jacking
§ Same domain XSS

§ Countermeasures:
§ X-Frame-Options / frame-ancestors
§ HTML5 sandbox attribute for iframes

55



Click-jacking

Source: “Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites” (W2SP 2010)

!

56



Unsafe countermeasures
§ A lot of unsafe ways exist to protect against 

clickjacking
§ if (top.location != location)

top.location = self.location;
§ if (parent.location != self.location) 

parent.location = self.location;

§ Can easily be defeated by 
§ Script disabling/sandboxing techniques
§ Frame navigation policies
§ XSS filters in browsers

Source: “Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites” (W2SP 2010) 57



X-Frame-Options
§ Issued by the HTTP response header
§ X-Frame-Options: SAMEORIGIN
§ Indicates if and by who the page might be 

framed

§ 3 options:
§ DENY
§ SAMEORIGIN
§ ALLOW-FROM uri

58



XFO has been integrated in CSP

59

§ New CSP directive: frame-ancestors
§ Content-Security-Policy: frame-ancestors 

https://partnerA.com https://partnerB.com

§ In contrast to X-Frame-Options, a 
sourcelist is allowed
§ Common advice is to tailor per partner

CSP 1.1



Limitations of framing content in same origin

60

§ Iframe integration provides a good 
isolation mechanism
§ Each origin runs in its own security context, 

thanks to the Same-Origin Policy
§ Isolation only holds if outer and inner frame 

belong to a different origin

§ Hard to isolate untrusted content within 
the same origin

!



HTML5 sandbox attribute
§ Expressed as attribute of the iframe tag
§ <iframe src= "/untrusted-path/index.html" 

sandbox></iframe>
§ <iframe src="/untrusted-path/index.html" sandbox= 

"allow-scripts"></iframe>

§ Level of Protection
§ Coarse-grained sandboxing
§ ‘SOP but within the same domain’

61



Default sandbox behavior
§ Plugins are disabled

§ Frame runs in a unique origin

§ Scripts can not execute

§ Form submission is not allowed

§ Top-level context can not be navigated

§ Popups are blocked

§ No access to raw mouse movements data
62



Sandbox relaxation directives
§ Relaxations:

§ allow-forms
§ allow-popups
§ allow-pointer-lock
§ allow-same-origin
§ allow-scripts
§ allow-top-navigation

§ Careful!
§ Combining allow-scripts & allow-same-origin voids the sandbox 

isolation

§ Plugins can not be re-enabled

63



HTML5 sandbox

64



Sandbox has been integrated in CSP

65

§ New CSP directive: sandbox
§ Content-Security-Policy: sandbox

§ Content-Security-Policy: sandbox allow-scripts

§ Similar options apply:
§ allow-forms
§ allow-pointer-lock
§ allow-popups
§ allow-same-origin
§ allow-scripts
§ allow-top-navigation

CSP 1.1



Recap: Framing content securely
§ CSP: Frame ancestors
§ Robust defense against click-jacking
§ Any state-changing page should be protected

§ CSP: Sandbox attribute
§ Coarse-grained sandboxing of resources and 

JavaScript
§ Interesting enabler for security architectures

66



Wrap-up

67



Conclusion

68

§ Whole new range of security features
§ Browser-side enforcement, under control of the server

§ NOT a replacement of secure coding 
guidelines, but an interesting additional line of 
defense for
§ Legacy applications
§ Newly deployed applications

§ And most probably, there is many more to 
come in the next few years…



Primer on Client-Side Web Security

69

§ Covers the landscape of 
client-side Web security
§ State-of-the-art in web 

security
§ State-of-practice on the Web
§ Recent research and 

standardization activities
§ Security best practices per 

category



References

70

§ Ph. De Ryck, M. Decat, L. Desmet, F. Piessens, W. Joosen. Security of web mashups: a survey (NordSec 2010)

§ P. Chen, N. Nikiforakis, L. Desmet and Ch. Huygens. A Dangerous Mix: Large-scale analysis of mixed-content 
websites (ISC 2013)

§ N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, Ch. Kruegel, F. Piessens, G. Vigna, You are 
what you include: Large-scale evaluation of remote JavaScript inclusions (CCS 2012)

§ Ph. De Ryck et al., Web-platform security guide: Security assessment of the Web ecosystem (STREWS 
Deliverable D1.1)

§ A. Barth, D. Veditz, M. West, Content Security Policy 1.1, W3C Working Draft 11 February 2014

§ G.Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame busting: a study of clickjacking vulnerabilities 
at popular sites (W2SP 2010)

§ Mike West. An introduction to Content Security Policy (HTML5 Rocks tutorials)

§ Mike West. Confound Malicious Middlemen with HTTPS and HTTP Strict Transport Security (HTML5 Rocks 
tutorials)



References (2)

71

§ Mike West. Play safely in sandboxed iframes (HTML5 Rocks tutorials)

§ Ivan Ristic. Internet SSL Survey 2010 (Black Hat USA 2010)

§ Moxie Marlinspike. New Tricks for Defeating SSL in Practice (BlackHat DC 2009)

§ Mike West. Securing the Client-Side: Building safe web applications with HTML5 (Devoxx 2012)

§ B. Sterne, A. Barth. Content Security Policy 1.0 (W3C Candidate Recommendation)

§ D. Ross, T. Gondrom. HTTP Header Frame Options (IETF Internet Draft)

§ J. Hodges, C. Jackson, A. Barth. HTTP Strict Transport Security (HSTS) (IETF RFC 6797)

§ C. Evans, C. Palmer, R. Sleevi. Public Key Pinning Extension for HTTP (IETF Internet Draft)

§ Can I use … ?, http://caniuse.com/


